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FORMAT OF THE DISSERTATION 

This dissertation follows the alternative style format which permits the 

inclusion of papers submitted to scholarly journals. Three such papers have been 

included in this dissertation. The development of the MD/MC-CEM formalism as an 

approximation to the corrected effective medium (CEM) theory is contained in Paper 

I, entitled "Corrected Effective Medium Method. V. Simplifications for Molecular 

Dynamics and Monte Carlo Simulations." It has been accepted for publication in the 

Journal of Chemical Physics. The formulation of the analytic derivative of the CEM 

potential and its implementation on a hypercube is presented in Paper II, entitled 

"Numerical Integration on a Hypercube Computer." It has been submitted for 

publication in the Journal of Computational Physics. A detailed discussion of the 

structure and energetics of Nij^ and Pd^^ clusters (4 ^ N ^ 23) appears in Paper III, 

entitled "The Structure ofNij^andPd^ Clusters: 23." It has been 

submitted for publication in the Journal of Chemical Physics. In this dissertation, 

all three papers follow the style requirements as set forth by the Journal of 

Chemical Physics. 
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GENERAL INTRODUCTION 

Clusters of transition metal atoms perform a number of technologically 

important functions. Their catalytic properties are used extensively in the 

petroleum refining and chemical manufacturing industries. They also facilitate the 

control of toxic gases such as carbon monoxide in automobile exhaust. Typically, 

these metal particles are < 100 Â in size and are dispersed throughout porous 

materials such as alumina or silica.^ Their small size exposes most of the metal 

atoms to the gas phase environment about them. In comparison to the bulk metal, 

metal atoms in these clusters can have unique geometric arrangements and can be 

coordinatively unsaturated. This, in turn, affects the electronic structure of these 

metal clusters and contributes to their high reactivity. The specific relationships 

between the geometric and electronic structure of metal clusters and their catalytic 

activity are not thoroughly understood. 

Fundamentally, experimental and theoretical investigations of metal clusters 

aim to increase our knowledge and understanding of their electronic and geometric 

structure as they evolve from a single atom to clusters of atoms and from clusters to 

the bulk phase. Model studies of catalytic systems have focused on gas phase 

clusters free of influence from the support. This research has uncovered a unique 

and rich diversity of physical and chemical properties for clusters of less than 

several hundred atoms. Often, these properties vary dramatically with the number 

and type of metal atoms in the cluster. Such discoveries have led to the suggestion 

that "small clusters are a novel state of matter, 'surfaces' in transition from 

molecules to bulk materials".^^ 
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Gas phase, transition metal clusters are most commonly generated by means 

of laser vaporization of a metal sample in a flow tube.^ Once vaporized the metal 

atoms are entrained in a stream of an inert carrier gas flowing through the tube. 

Collisions with the carrier gas atoms cool the metal vapor inducing nucleation and 

rapid growth of the metal clusters. The analysis of metal clusters is often facilitated 

by the addition of a chemically active reagent at some point into the stream. The 

metal clusters are allowed to react with the reagent for a predetermined amount of 

time before the stream passes through a nozzle expanding into a vacuum. After the 

expansion terminates the reaction, the products are photoionized and mass analyzed 

in a time-of-flight mass spectrometer. The rates of reaction and degree of saturation 

coverage of metal clusters of various size are evident in the mass spectra. 

Inferences are drawn from this data about the electronic and geometric structure of 

these metal clusters. 

One such experimental investigation considered the steady state coverage of 

gas phase, transition metal clusters with deuterium.^ Among their conclusions the 

investigators note the ability of very small clusters to chemisorb inordinate amounts 

of deuterium and the non-monotonic size dependence of the stoichiometry of the 

saturated product. In the range of 12 to 19 atoms, for instance, nickel cluster 

cations exhibit an odd/even alternation in their deuterium uptake capacity. 

Specifically, the saturated products appear to be Ni^gD^y'"', Ni^gD^g"*", 

NiisDie"'', NiigDg]^^, Nij^^D^y"*", Ni^gDgy^ and Ni^gDggt As suggested by the original 

investigators, this alternation may reflect an underlying variation of the hydrogen 

adsorption energy of these clusters. Undoubtedly, the structural stability of each 
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cluster influences its propensity to adsorb hydrogen. 

The indirect information obtained in such experiments needs to be 

complemented by accurate computational models. Theoretical development of 

approaches such as the corrected effective medium (OEM) method^ has been 

motivated by such a need. Based upon concepts developed within density functional 

theory, effective medium approaches'^ approximately describe the atomic 

interactions determined by the delocalization of electrons in metal systems with 

more accuracy than simpler empirical potentials yet with less computational expense 

than self-consistent quantum chemical calculations. The CEM method enables 

studies that increase our knowledge of the structural and energetic properties of 

metal systems. 

The computational intensity of CEM calculations currently limits its use for 

modeling large systems containing thousands of atoms. In Paper I, we present the 

conceptual and formal simplifications of the CEM theory that allow it to be used 

directly in molecular dynamics (MD) and Monte Carlo (MC) simulations of such 

systems, hence the acronym MD/MC-CEM. In order to demonstrate its potential, 

several brief applications of this method are also discussed. 

The increased computational speed of the MD/MC-CEM method is achieved 

by assuming that effects due to the electron density of an arbitrary set of atoms can 

be approximated by similar effects within the homogeneous bulk phase of a metal. 

While this assumption may be valid for large, nearly homogeneous systems such as 

metal surfaces, it is often inaccurate for small and heteronuclear systems. In order 

to investigate the uptake of hydrogen by metal clusters, for example, atomic 
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interactions must be accurately modeled for the adsorbate both within and without 

the surface of the cluster. CEM calculations of the atomic hydrogen adsorption 

potential on the Ni (111) solid surface indicate that the simpler MD/MC-CEM 

interaction potential cannot consistently predict both the interaction energy of 

hydrogen adsorbed on the surface and absorbed within the metal. The effects on the 

interaction due to the electron density in each location are sufficiently different that 

the use of the MD/MC-CEM method is precluded. 

The need for greater accuracy motivated additional development of the CEM 

method so that it could be used to model transition metal clusters and their 

reactions with adsorbates. In Paper II, we present two developments that have 

enabled not only the structural optimization of Nij^ and Pdj^ clusters (4 ^ N ^ 23) 

using the CEM potential, but also the study of hydrogen uptake by these metal 

clusters. First, the analytic derivative of the kinetic, exchange and correlation 

energy functionals is described. Its formulation facilitates the evaluation of the 

interatomic forces determined by the CEM potential. It is essential for molecular 

dynamic simulations and efficient structural optimization calculations. Second, the 

computation of the CEM potential and forces would be almost prohibitive but for the 

recent implementation of the CEM code onto a hypercube computer. Details of the 

implementation and analysis of its performance are discussed in relation to the 

application of the CEM method to investigate metal clusters. 

In Paper III, we discuss the predictions of CEM for stable structures of Nij^ 

and Pd^ clusters (4 < N ^ 23). Several unique structural properties of these clusters 

are described in contrast to the bulk and low Miller index surfaces of these metals. 
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Furthermore, the relationship between the geometrical structure and the nature of 

the atomic interactions within these transition metal clusters is developed by 

contrasting them with clusters of rare gas atoms. Significant differences are 

demonstrated between these two types of clusters. In relation to experimental 

investigations, the predictions of GEM are shown to be valuable in the 

interpretation of ammonia adsorption on Nij^ clusters. 

In this paper, we also note several observations of relevance to the deuterium 

adsorption data discussed above. The even/odd alternation in the capacity to 

chemisorb deuterium correlates with two properties observed for Nij^ clusters in the 

range from 12 to 19 atoms. First, the clusters with even numbers of atoms are not 

as energetically stable as the clusters with odd numbers of atoms. Second, the Ni^^, 

Nijg, and Ni^g clusters have stable isomers within approximately 100 meV of their 

most stable geometries. These isomers are not as compact as the most stable 

structures. Due to these characteristics, the clusters with even numbers of atoms 

may in fact bind the deuterium more strongly than the clusters with odd numbers of 

atoms. As a result, these clusters may adsorb more deuterium at saturation levels. 

Ongoing research is investigating such issues. Already, the variation of hydrogen 

binding energy to Ni^ clusters has been demonstrated as illustrated by Fig. 1. 

These studies will continue to provide a more detailed understanding of structure-

reactivity relationships in transition metal clusters. 
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Fig. 1: Energy gained upon uptake of a given amount of hydrogen by Ni clusters of 

various size: Nij^ + M H2 —> Nij^Hj^. 



www.manaraa.com

8 

PAPER 1. 

CORRECTED EFFECTIVE MEDIUM METHOD: 
V. SIMPLIFICATIONS FOR MOLECULAR DYNAMICS 

AND MONTE CARLO SIMULATIONS 



www.manaraa.com

9 

Corrected elfective medium method: V. 
Simplifications for molecular dynamics 

and Monte Carlo simulations 

Mark S. Stave 
David E. Sanders^ 

Todd J. Raeker 
and 

Andrew E. DePristo 

Ames Laboratory - USDOE 
and 

Department of Chemistry 
Iowa State University 

Ames, Iowa 50011 

® IBM predoctoral Fellow 



www.manaraa.com

10 

ABSTRACT 

We present the conceptual and formal simplifications of the recently 

developed corrected effective medium (OEM) theory that enable this theory to be 

used directly in molecular dynamics (MD) and Monte Carlo (MC) simulations of 

large systems, hence the acronym MD/MC-CEM. The essential idea involves 

adjustment of the CEM embedding functions to include approximately the original 

explicit correction for kinetic-exchange-correlation energy differences between the 

real system and the many atom-jellium systems used as the zeroth order model. 

Examples of this construction are provided for the Ni, Pd, Ar and H/Pd(lll) 

systems. 

Finally, a few brief applications of this method to large systems are provided. 

These include relaxation of metal surfaces, structure of pure Ni and mixed NiCu 

clusters, sticking of Cu on Cu(100), and the scattering of Ar from H covered Pd(lll). 



www.manaraa.com

11 

I. INTRODUCTION 

The potential energy surface (PES) and interatomic forces are central to 

treatments of equilibrium and non-equilibrium processes in chemistry and physics. 

Often an empirical procedure is used to obtain these: one assumes a convenient 

functional form with adjustable parameters and determines these parameters by 

fitting to some combination of calculated and experimental energies. Molecular 

mechanics methods form perhaps the most complete data base of parameters.^'^ 

There are two main conceptual and numerical problems with the above 

procedure. First, there is often little theoretical basis for the functional form which 

is generally chosen for convenience in differentiation and speed in computational 

evaluation; hence, the representation may not provide an accurate interpolation of 

the PES and extrapolation beyond the fitted points becomes problematic. Second, 

the parameters must be determined anew for each system which limits the 

predictive ability of the theory, not to mention making the entire application 

procedure extremely tedious. Indeed, one often needs to be quite sure that a system 

will display unusual behavior before spending the effort in constructing a PES. 

For systems containing only a few atoms, these problems may not be 

particularly severe. The regions of configuration space important for the dynamics 

can be determined by inspection and (perhaps) intuition. Many calculated energies 

can be provided in this region by both accurate ab initio and first principle methods. 

Moreover, an exhaustive investigation of one particular system is often desirable, so 

that the fitting and parametrization of the PES is not an unduly tedious task 

relative to the amount of dynamical information gained. 
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For systems up to ten or twenty atoms, recent work of Car and Parrinello 

and coworkers^ has demonstrated the feasibility of performing electronic structure 

calculations fast enough to evaluate the forces directly, at least within a SCF-LD 

framework. Approximate molecular structure techniques can also be used in an 

analogous manner as indicated by the work of Karplus and coworkers on protein 

dynamics.^'' 

For still larger systems, such direct calculations are not feasible and the 

determination of many interaction energies for fitting is also not possible. 

Furthermore, many different types of systems often need to be investigated in only 

slight detail (e.g., for the design of new materials). Hence, one does not wish to 

parametrize a functional form for each system (of which there will be a great 

variety). For large systems, moreover, one cannot simply choose any convenient 

functional form and expect adequate results. A good example is the use of the 

Lennard-Jones (12,6) form for the binding energy of monatomic metals;^ the two 

parameters in the potential can be fixed by specification of the lattice constant and 

cohesive energy or the lattice constant and the Debye frequency. The former choice 

leads to an overestimate of the Debye frequency by a factor of about three while the 

latter leads to an underestimate of the cohesive energy by about a factor of flve.^"^ 

Replacement of the LJ(12,6) by a three parameter Morse potential (which can 

duplicate all three pieces of experimental data^) leads to unphysically large 

expansions of the surface layers.^ One is thus led quite quickly to much more 

complex forms with many parameters. The situation for semiconductors is even 

worse.® 
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Progress has been made for metallic systems, however. The recently 

developed embedded atom method (EÂM) provides a theoretically based form for 

metal-metal bonding with a limited number of parameters.^^ It has been applied 

successfully to a number of simulations in which many thousands of atoms evolve 

dynamically.^^ The effective medium (EM) method,predating the EAM, has also 

been applied to large systems. 

In a number of recent articles,we have derived, implemented and 

applied a new approach to the calculation of interaction energies based upon the 

explicit evaluation of corrections to the EM theory using density functionals. This 

corrected effective medium (OEM) theory allows the calculation of the interaction 

energy for any number (N) and type of atoms {Aj, i=l,..,,N}. The basic idea of this 

theory is to model the interaction of each atom with all other atoms {Aj, j=l N, 

j^ii} by embedding atom into a spin-impolaiized jellium of density n^. The 

differences between the real and atom-jellium systems due to inhomogeneities of the 

electron density and the point charge of the nuclei are determined non-self-

consistently and involve both Coulombic and kinetic-exchange-correlation energies. 

The fundamental theoretical development occurs in Ref. 16 with refinements and 

symmetry inclusions in Refs. 17-19. 

For the present purposes, the important point is that the calculation of 

interaction energies with good accuracy at (relatively) low computational cost can be 

provided by this OEM theory. This has been illustrated for diatomic bond 

energies,^® metal cluster binding energies,surface free energies and 

relaxations,^® and adsorbate-surface binding energies and structures.^® However, 
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these energy evaluations are still orders of magnitude slower than simple empirical 

pair potentials, or even the EÂM and EM methods. To gain this additional speed, 

one must give up some accuracy of course. 

In this paper, we present the conceptual and formal simplifications of the 

OEM theory that allow the theory to be used directly in MD and MC simulations of 

large systems, hence the acronym MD/MC-CEM. The essential idea involves 

ac^justment of the OEM embedding functions to include approximately the original 

explicit correction for kinetic-exchange-correlation energy differences between the 

real system and the many atom-jellium systems used as the zeroth order model. 

Examples of this construction are provided for the Ni, Pd, Ar and H/Pd(lll) 

systems. 

The remainder of this paper is divided into three sections. Section II briefly 

reviews the OEM theory and discusses the simplifications needed to use OEM in 

large scale simulations. Section III presents illustrative applications of the MD/MC-

CEM method. Finally, a brief summary and conclusions are presented in Section 

TV. 
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n. MD/MC-CEM THEORY 

Consider a system of N atoms {Aj, i=l,N} where each Aj can be any type 

of atom. The nuclei are located at {R}={Ri, Rg, •••» while the vectors locating a 

position relative to the nuclei are {r}=(rj^, T2,..., r^j). The interaction energy can be 

written in the exact form^® 

N 

AE({Aj}) = E AEj(A,; n,) + AV^ + AG({A,}) . (D 
1=1 

The first term is the sum of the embedding energies for each atom embedded into 

jellium of density n^, AEj<Aj; n^). The second is the difference in the Coulombic 

energy between the real system and every atom embedded in jellium, AV^. The 

third is the difference in the sum of the kinetic, exchange, and correlation energies 

between the real system and every atom embedded in jellium, AGK{A^}). This term 

is given by 

N 
AG = G({A,}) - E [G(Aj+iii)-G(nj)] , (2) 

1=1 

where GKS) is the kinetic-exchange-correlation energy of the system S. 

In Eq.(l) the summation of atom-jeUium systems is the zeroth order model 

for the real N-atom system. The corrections to this zeroth order model include 

Coulombic and kinetic-exchange-correlation energies. Both arise from the difference 

in electron density homogeneity between the real and atom-jellium systems, with 

the latter depending explicitly on the gradient of the electron density. These 

corrections are not calculated self-consistently. 
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In the OEM approach the approximation of superposition of atomic electron 

densities is utilized. Thus, the system electron density is simply expressed as 

n(?) = 
1=1 

where the atomic electron density is the sum of both up- and down-spin densities 

ii(Aj; F,) = n+(A^; ?,) + ?,) . (3b) 

As a result the Coulombic energy difference is simply the summation of atom-atom 

Coulomb integrals, 

= E  Z VcOJ) .  w' 
1=1 jfl 

and is independent of the jellium densities, {n^}. In order to determine the jellium 

densities, a quadratic functional approximation to AG is minimized with respect to 

the {n^}, yielding the expression: 

" i  =  E  / ? i ) ? j )  +  n - ( A j ; î ^ )  n - ( A ^ ,  F j ) ] d F / Z ,  ,  ( 5 a )  

which reduces for unpolarized densities to 

"i = F,) n(A^; F^) dF/Z, , (5b) 
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where is the atomic number. The integrals in Eqs.(5) are over all space with = 

^ and t^ = 't -

The embedding energies are known quantities. In one case, they have been 

calculated by Puska et al. for nearly all the atoms through Cu as a function of 

jeUium density using the SCF-LSD approach.^^ These values are denoted as 

AEp(A^; n^). In another case, they can be constructed from the binding potentials for 

the homonuclear diatomic and homogeneous bulk systems, as discussed in detail in 

Refs. 17-19, and as illustrated below. These values are denoted as AEq(Aj; nj). In 

these papers, the distinction between these two energy functions was discussed and 

it was shown that they are two special cases of a more general embedding function 

that is a function of both the jellium density and the work function of the jellium. 

Thus, the subscript "C" indicates that these embedding values are determined from 

essentially "covalent" binding interactions, in contrast to the SCF-LSD results that 

have a large contribution from ionic binding. Both functions can be evaluated via 

interpolation. 

Eqs.(l-5) define the CEM interaction energy. These expressions can be 

evaluated after specifying the following: 

1) the embedding function for each atom in the system; 

2) the atomic densities and gradients; 

3) the kinetic, exchange and correlation energy density functionals. 

The reader interested in a more detailed derivation and justification of the theory is 

referred to Refs. 16-19, and an upcoming review.The problem of interest here 

involves the evaluation of the terms in Eq.(l), and eventually the modification of 
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this equation. 

To begin, note that evaluation of the atom-atom Coulomb energies and the 

electron density overlaps can be accomplished with relatively little computational 

work even for non-spherical atomic densities. The subsequent densities can then be 

used to evaluate the embedding energy functions. (Details of the evaluation of these 

terms can be found in Ref. 21 for spherical densities and Ref. 14 for the general 

case.) 

The time-consuming part involves the correction term, AG({Aj}). The term 

GKA^+n^) involves a three dimensional quadrature over one center, but does not 

depend upon the geometry of the N-atom system (except via the specification of the 

jellium density n^). It can be evaluated for a number of jellium densities, tabulated 

and then evaluated by interpolation much like the embedding functions. The 

general term G(2IAj), however, involves a three dimensional quadrature over many 

centers, and varies expUdtly with each geometrical change in the coordinates {R}. 

This integration is performed efficiently using Becke's fuzzy cell integration 

method^^ with one cell per atomic center. The integration within each cell utilizes 

Gauss-Laguerre radial, Gauss-Legendre and Gauss-Chebyshev angular 

quadratures,^^ and requires 5,000-10,000 integration points per cell for an accuracy 

of 0.001 eV. At each of these points, the electron density and gradient from every 

atom must be evaluated. Although the radial densities and derivatives for each 

atom are stored in a large table, and the required values determined by linear 

interpolation, there are so many points in a large system (i.e., > 5000N) that 

evaluation of G(£A^) is by far the most time consuming part of the calculation. 
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The direct use of OEM in MD or MC simulations of large systems is 

prohibitive computationally due to this multicenter integration. However, this 

problem may be eliminated in the following way. The ansatz may be made that the 

effect of AG on the interaction energy can be incorporated by redefinition of the 

embedding energies: 

Here AFj is a new Amotion of the jellium density. At first Eq.(6) may not appear 

sensible since the left side is an explicit function of the jellium densities while the 

right side is an explicit Amotion of the jellium densities and coordinates via AG. 

However, since the jellium densities depend explicitly on the coordinates via Eq.(5), 

Eq.(6) is meaningful. This leads to the much simpler MD/MC-CEM form of the 

interaction energy: 

This equation, while an approximation, can always be tested by performing full 

GEM calculations for selected configurations of the system. However, the 

approximation in Eq.(6) can also be tested directly at least in a semi-quantitative 

manner. 

In principle, the corrections of the full GEM theory enable accurate 

predictions of interaction energies for diverse systems. For example, the atoms in a 

homonuclear diatomic or bulk system could conceivably have the same jellium 

density yet the correction energies would be significantly different for the two 

systems. Both interaction energies can be predicted by GEM since the corrections 

Z AFj(A.;n.) - g AEXA,;n,) + AG((A,}) . (6) 

(7) 
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can account for the vast differences in the electron density environments.^^*^^ 

Now consider the qualitative conditions under which one might expect Eq.(6) 

to hold. A formal justification of Eq.(6) requires 

AG((A,)) - E f(A,;n,) , (8) 

where each f is an arbitrary function of the jellium density. In regard to the 

approximation in Eq.(8), one should note that a functional of the total electron 

density and its gradient for a particular system is approximated by a sum of 

functions. Each of these functions pertains to a particular atom in the system and is 

supposedly universal in the sense of being independent of the particular system 

under study. If the electron density environment does not change too drastically, 

this will be an adequate approximation. In contrast to OEM, MD/MC-CEM 

obviously cannot be expected to predict the interaction energies of both a diatomic 

and bulk system at a given jellium density due to the vast difference in electron 

density environment. In fact, Eq.(8) can only be exact for any one system in which 

there is just one independent distance and one independent jellium density. In any 

other case, it is not possible to enforce the f(A^; n^) to be single valued. This will be 

clear shortly when we show explicit tests of such a replacement. 

A more quantitative analysis can be provided by illustrating a construction 

method for the AFj<Aj^; n^). Consider two systems: a homonuclear diatomic and a 

monatomic bulk solid. Since in both systems all atoms are the same type and are in 

identical environments, the Ainctions for all atoms are the same and Eq.(6) becomes 

for a homonuclear diatomic and 

for a monatomic bulk solid, where WS(1) indicates that the integration extends only 
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AF,(A,;ii,) = AE,(Ai;li,) ^ |aG(A„A,) (9a) 

AF4A.;n) = AE,(A,in,) + AG({A,m,^ (9b) 

over the Wigner-Seitz cell of Aj. Eqs.O) provide a simple way to determine the 

new embedding functions for homonudear systems. 

As examples, consider the Ni and Pd systems. Since AG must be evaluated, 

we note the density functional. The kinetic energy functional is an accurate Padé 

approximation^"^ in | Vn | / n^^ that approximately sums the full series in the 

gradients of the electron density. The local Dirac exchange functional^® and the 

local Gunnarsson-Lundqvist (GL) correlation functional^® are used. Fig. 1 shows 

the contribution of the AG term in Eqs.Oa) and (9b), respectively. Clearly, AG is not 

a universal function of the jellium density since the diatomic and bulk portions do 

not match. In particular, note that for any given jellium density different values of 

AG for the diatomic and bulk systems lead to a double valued relationship in Eq.(8). 

This is due to the difference in the electron density environments of the two 

systems. 

The situation is not as bad as it appears, however, since the range of jellium 

densities near equilibrium for the diatomic system does not overlap that for the bulk 

system. Only a very contracted diatomic and very expanded bulk overlap, where 

energy errors of = 0.2 - 0.6 eV are not particularly significant with respect to the 

large interaction energy. Additionally, only the effect of AG on the interaction 

energy of the system is directly of interest, not the actual value of AG. To 

investigate these 
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Fig. 1: The correction energy contribution in Eqs.(9), for the a) Ni and b) Pd systems. 
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energies, note that the full OEM covalent embedding function AEq is determined^^ 

by inverting the homonuclear diatomic binding curve and the monatomic bulk 

cohesive energy curve: 

AEc(Ai;n,) = (AE(Ai, A^) - Vc(l,2) - AG(A,, , (10a) 

AEc(A.;n,) = AE^(A.) - Vc(l.J) " . 

Combining Eqs.(9) and (10) yields 

AF<.(A,;n,) = {AE(A,.Aj)- Vc(l,2)}/2 , 

AFc(A,;n,) = AE^(A,) -V<.(l,j) . 
^ j f l  

Hence, the new covalent functions are determined in an analogous way to the old 

functions. Since the density in Eqs.(lO) and (11) wiU be the same and since the 

diatomic and bulk densities are quite separate, the validity of Eqs.(ll) can be 

determined by the smoothness of AFQ as a function of density. This is the criterion 

used in Refs. 17 and 18 to indicate the universality of the function AEQ. However, 

one should not lose sight of the fact that the approximation in Eq.(6) underUes 

Eqs.(ll). Hence, the accuracy and validity of the MDIMC-CEM formalism must be 

lower than those of the CEM formalism. 

The analogous functions AEQ and AFQ have been constructed for Ni and Pd. 

The diatomic binding curve used in Eqs.(lOa) and (11a) is a Morse potential with 

(10b) 

(11a) 
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parameters determined by fitting to the binding energy, vibrational frequency and 

bond length. This yields (Dg, a^, Rg) of (2.092 eV, 1.017 Bohr'^, 4.157 Bohr) and 

(1.04 eV, 0.6825 Bohr"^, 5.008 Bohr) for Ni and Pd, respectively.^^ The points are 

evaluated at 1.00-1.05Rg in steps of O.OlRg. The bulk cohesive energy used the 

universal binding energy curve^^ in the form of a Morse curve in the lattice 

constant, AEgQ^^(a) = D [exp(-2a(a-ao))-2exp(-a(a-aQ))]. The values of (D, a, Oq) are 

(-4.44 eV, 0.538464 Bohr'^, 6.65 Bohr) and (-3.89 eV, 0.592743 Bohr'^ 7.35 Bohr) for 

Ni and Pd, respectively.^^ The value of a was determined from the bulk modulus of 

1.86x10^^ J/m^ and 1.808x10^^ J/m^ for Ni and Pd, respectively. The points are 

evaluated at 0.95-1.05aQ in steps of O.Olag. This Morse form should be more 

accurate than a simple harmonic expansion. In contrast to the mismatch of AG in 

Fig. 1, the function AFq in Fig. 2 is rather smooth in appearance. This situation 

occurs because AG is generally a rather small fraction of the embedding energy in 

the compressed diatomic and bulk limits. However, we must caution that when 

small energies are needed the errors in neglecting AG can be unacceptable. In that 

case, no methods presently available are sufficiently fast to use OEM directly in MD 

or MC studies of systems with many degrees of freedom. 

As an illustration of the accuracy that can be expected for energies, a few 

surface energies are Usted in Table I for the perfectly terminated surfaces of the Ni 

and Pd systems. (The surface energies vary only slightly as a function of the 

relaxation of the layers as can be seen in Table II and Ref. 18.) The more 

approximate MD/MC-CEM theory is still quite good, a substantial improvement over 

the computationally and formalistically similar EAM. Of course, GEM is more 
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Table I. Surface energies of the low Miller index surfaces of Ni and Pd. 

Surface Energies Og ( J/m^) 

atom face OEM MD/MC-CEM EAM Expt.^ 

Ni 100 2.08 2.48 1.54 

110 2.27 2.70 1.73 2.38 

111 1.98 2.36 1.28 

Pd 100 1.77 2.02 1.25 

110 1.93 2.20 1.37 2.00 

111 1.67 1.91 1.05 

®EAM values from Ref. 10(c). 
^Average of a polycrystalline surface from Ref. 30. 

accurate than MD/MC-CEM, but we would suggest that the accuracy of the latter is 

acceptable for many purposes. Nonetheless, if energies an order of magnitude 

smaller are required, as occur for reconstructions and perhaps for relaxations, then 

such inaccuracy would not be acceptable. This will be discussed more in the first 

application in Section IV. 

Complications may arise for heteronuclear systems. If the interactions are 

expected to be similar to the homonuclear case, then the AFq determined for the 

homonuclear systems can be used. This predictive ability is a m^'or advantage of 

the CEM method. If the bonding is expected to be ionic, then the results of Eqs.(9-

11) with AEp on the right-hand side may be used. The question of the 

appropriateness of the embedding function AFj for any system is no different than 

for AEj. Thus, the same caution concerning strong electronegative and 
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electropositive elements must be used as for the full OEM calculations. Indeed, full 

OEM calculations can be performed for the system under consideration to determine 

the adequacy of the type of embedding function chosen. This information, in turn, 

can be used to determine AFj. 

For example, AFp can be constructed for a single H atom interacting with 

Pd(lll). For Pd the covalent embedding functions, AEq and AFg in Fig. 2, can be 

used. For H the binding interaction will be largely ionic, implying that the Puska et 

al. embedding function can be used.^ The CEM interaction energy of the H-Pd(lll) 

system is then 

AE(H,|Pdi}) = AEp(H;nH) + 

(12a) 

E AE<.(Pd,:ii,)H.4Ve(H,{Pd,})-^ AG(a(Pd,}) , 

while the energy of the Pd(lll) system without the H is 

^Since AEp(H; n) was not known at sufficiently large densities for the system 

of interest here, it was supplemented with two high density binding energies for 

H in bulk Pd. These values are the experimental heat of solution at infinite 

dilution (AHjj=-0.10 eV^^®, along with the vibrational frequency of a H atom in 

its bulk octahedral site of 0.066 eV^^^) and the estimated tetrahedral minus 

octahedral energy of =0.2 eV.^^ This difference cannot change by more than 0.2 

eV and still have the more stable site be octahedral. The embedding function 

region of importance for H on Pd(lll) is insensitive to such a small change. The 

added complication has nothing to do with MD/MC-CEM and is only mentioned 

since the reader may wonder about the origin of the high density points for 

AEp(H) in Fig.3. Alternatively, one could do further SCF-LD calculations of 

AEp. 
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AE(|Pd,})« = E 4Be(Pd,:ii,°) . AVj,({Pd,}) f AG({Pd,)) . (12b) 

The superscript "0" indicates that the density is only due to the Pd atoms. The 

analogous equations within the MD/MC-CEM formalism are 

Now it is the additional interaction of H with Pd(lll), AE(H,{Pdj})-AE({Pdj})®, that is 

required to be similarly reproduced by the two functions, AEp(Hpi) and AFp(Hpi), 

not the interaction energies, AE(H,{Pdj}). The latter include the surface free energy 

guaranteed to duplicate the binding energy of Pd2 and Pd(bulk), but not necessarily 

the surface energy (as is apparent from the data presented in Table I). This slight 

inaccuracy should not be included in the new H-atom embedding function. 

Setting the difference, AE(H,{Pdj}) - AE({Pdj})®, equal between the two forms 

yields 

AEfUp-d,}) = AF,(H;li„) » g AF<.(Pd,jn,) . AVc(H.{Pd,}) , 

AE(pd,})« = X; AFc(Pd,;n°) + AVc({Pd,)) . (13b) 

(13a) 

of the Pd(lll) that will not be the same in both forms. In other words, AE({Pd^})^, 

differs slightly between Eqs.(12b) and (13b) because the function AFQ(Pd^;nj^) is 

A Fp(H; n„) = A Ep{H; ii„) + A G(H,{Pd,}) - A G({Pd,}) + 

(14) 

(AF(,(Pd,;n,)-AFc(Pd, 



www.manaraa.com

31 

This expression defines the new embedding function for the H-atom in terms of 

quantities calculable by the full OEM form. In Fig. 3, the functions AEp(Hpi) and 

AFp(Hpi) are shown. The latter is again quite smooth, implying that it could be 

used for other faces of Pd and other metals with acceptable accuracy. 

It is worthwhile to describe an alternative interpretation of the MD/MC-CEM 

theory. MD/MC-CEM is simply a convenient parametrization of CEM providing 

lower accuracy over a range of systems and/or configurations. Instead of 

determining AF^. from experimental data as in Eq.(ll), it is also feasible to find AF^ 

(or AFp) by requiring MD/MC-CEM results to agree with CEM values over a 

restricted range of system configurations. Then, the MD/MC-CEM results would be 

as accurate as the CEM values but would apply over a much smaller range of 

systems. The choice of construction will depend upon the need for accuracy vs. 

generality. The important point is that AFj are not universal in the same sense as 

AEj. This point will require further study. 

Before presenting several applications of the MD/MC-CEM theory, we should 

mention that the efficiency of the EM and EAM methods in numerical simulations 

has provided strong impetus for the present simplifications of the CEM procedure. 

While it is no surprise that the MD/MC-CEM, EAM and EM formalisms are similar, 

they are not identical. In particular, although the EAM interaction energy is a sum 

of embedding and two body functions just as in Eq.(7), all the EAM functions are 

chosen empirically. In contrast, only the embedding functions AFq are semi-

empirical in MD/MC-CEM since the original, semi-empirical AEq are used to 

generate AFg via Eq.(6). Moreover, the pairwise additive Coulomb energies are 
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attractive and the non-additive embedding energies are generally repulsive in 

MD/MC-CEM. This is exactly the opposite of the EAM form. Although the 

renormaUzation of the repulsions is certainly possible by subtracting out any Unear 

function of density and putting it into the Coulomb energy, this is unsatisfactory 

since it will make the repulsions very complex in form. The MD/MC-CEM form is 

actually more closely related to the original EM method. The EM approach utilizes 

an approximate evaluation of the Coulomb integrals and a simpler prescription for 

the jellium densities both of which are valid in the limit of slowly varying electron 

density. An upcoming review^^ will provide more detailed comparisons of these 

methods. The advantages of MD/MC-CEM include generality and accuracy. 
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m. EXAMPLES 

A number of problems can now be treated with relative ease. A few brief 

illustrations will be considered here: surface relaxation, structure of metal clusters, 

sticking of Cu atoms to a Cu(100) surface, and scattering of Ar from Pd(lll) and 

H(lxl)/Pd(lll). All of these will be considered in much more detail in separate 

pubUcations dealing in depth with each topic. These examples are chosen to 

illustrate both the power and limitations of the MD/MC-CEM approach, especially 

with regard to the fiill CEM theory. It is especially important to describe the latter 

since theories like MD/MC-CEM can be utilized so easily in a great variety of 

situations, even when they are not applicable. 

As a first test case, we consider the relaxation of the Ni and Pd surfaces 

using the functions AFq given in Fig. 2. Results are shown in Table II for the 

relaxation of a few low index surfaces of Ni and Pd and are compared to full CEM, 

EAM and experimental results. The MD/MC-CEM and CEM values were obtained 

by MC simulated annealing with 400 energy evaluations per temperature with six 

temperatures. Note the accuracy of the CEM calculations relative to either the 

MD/MC-CEM or EAM values. The relative inaccuracy of MD/MC-CEM is quite 

surprising in comparison to the very good values for the surface energy in Table I. 

To see why this arises, consider the variation of the relaxation energy with the 

change in the first interlayer spacing for the Ni(llO) system as shown in Fig. 4. 

Within the CEM method it is immediately apparent that the contribution firom AG 

drives the contraction, while the variation due solely to the homogeneous embedding 

plus Coulomb contributions would lead to a much smaller contraction. Thus, the 
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Table II. Relaxation of the low Miller index surfaces of Ni and Pd. 

Atom Face Method 

Ni 100 +1.1 -0.003 MD/MC-CEM^ 

-3.2±1.0 -0.020 CEM^'® 

-3.04 -0.35 -0.02 -0.02 EAM^ 

-3.2 Expt.® 

110 -1.1 -0.002 MD/MC-CEM^ 

-7.7±1.3 -0.041 CEM^'G 

-7.01 +1.84 -0.98 +0.34 EAM^^ 

-8.7 +3.0 -0.5 Expt.^ 

Pd 110 -3.5 -0.009 MD/MC-CEM^ 

-7.4±1.9 -0.039 CEM^'G 

-11.20 +2.49 -1.18 +0.40 EAM^^ 

-6 +1 Expt.® 

%urface relaxation energy in units of J/m^. 
^CEM and MD/MC-CEM calculations for one layer relaxation only. 
*^The listed uncertainties of %Ad]^2 for the OEM method are due to the fînite 
precision of the numerical integration of AG in combination with the flatness of the 
variation of the relaxation energy vs. %Adj^2 ^ evident in Fig. 4. 
<^Ref. 10(c). 
®Ref. 33. 

%ef. 34. 
gRef. 35. 

smoothing of the electron density environment due to the contraction lowers AG 

which in turn drives the contraction. This is a classic mechanism for surface 

relaxation. 
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Fig. 4: The relaxation energy (J/m^) for the Ni(llO) system within the CEM (o) and 
MD/MC-CEM (A) methods plotted as a function of the contraction of the 
spacing between the surface and first sub-surface layer relative to this 
spacing in a non-relaxed surface. The contributions to the CEM relaxation 
energy due to the embedding plus Coulomb energies (•) and to AG (o) are 
also shown. 
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The MD/MC-CEM relaxation energy variation in Fig. 4 predicts an even 

smaller contraction than that predicted by simply neglecting the AG contribution 

within the GEM method. This occurs because the inclusion of AG into AEq for a 

bulk system has the opposite effect as compared to the surface: expansion of the 

bulk lowers the density and the AG term (c.f., Fig. la) while contraction of the 

surface increases the density but lowers the AG term. These regions overlap in 

density but have different AG. 

From the above analysis, it is clear that the prediction of surface relaxation is 

generally not possible using MD/MC-CEM theory. Furthermore, this suggests that 

relaxations can only be treated accurately upon inclusion of gradients of the electron 

density in the kinetic-exchange-correlation functional (i.e., kinetic energy 

lowering).^® The only puzzling feature is the reasonable accuracy of the EÂM 

calculations in Table II, at least for Ni(lOO) and Ni(llO). Since the EÂM surface 

energies in Table I are not even as good as the MD/MC-CEM values and since the 

EAM predicted relaxation in Pd(llO) is poor compared to that in Ni(llO), we suspect 

that the prediction of surface relaxation by the EAM method is simply fortuitous. 

We would strongly suggest that this example provides an illustration of the 

importance of understanding the physical and chemical basis for a particular 

phenomena and not just focusing on the "accuracy" of the results. 

It is also important to note that the energy change upon relaxation is quite 

small. Hence, if one does not require knowledge of the geometry to an accuracy of a 

few percent, the MD/MC-CEM results are perfectly acceptable. The method 

certainly provides very good values for the energies. 
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Âs a second illustration, we consider the structure and energetics of small Ni 

clusters and a Ni^gCug cluster using the functions AFq pven in Fig. 2 for Ni and 

constructed anedogously for Cu. Clusters of rare gas atoms have been studied 

extensively both experimentally^^ and theoretically^^. Theoretical studies, often 

employing a two body Lennard-Jones potential, have focused on the identification of 

very stable structures (i.e., local minima on the PES) and, hopefully, even the most 

stable structure (i.e., the global minimum of the PES). This work has demonstrated 

the predominance of local fivefold symmetry sites in the structure and growth of 

these clusters. For example, for U particles between the very stable icosahedron 

(N=13) and double icosahedron (N=19) clusters, the progression of most stable 

structures reportedly involves the formation of a pentagon centered about one of the 

icosahedral fivefold axes followed by capping this new pentagonal face. (The only 

exception to this progression known by us was obtained in a quantum Monte Carlo 

study for N=17.^^^) 

In order to discover stable cluster configurations within the MD/MC-CEM 

model, simulated melting and annealing of Ni clusters was performed using a 

Langevin molecular dynamics approach.^^'®'®®'^® The melting of a cluster was 

simulated at approximately 2500 K for 20 ps. Subsequent annealing started at a 

temperature near 2000 K and was reduced by a factor of 0.95 until a threshold 

temperature was reached. 500 K, 200 K and 100 K thresholds were used with 10 

ps, 20 ps and 40 ps time intervals spent at each temperature in the respective 

annealing schedules. This led to cooling rates of 5.4 K/ps, 2.0 K/ps and 0.80 K/ps for 

the simulated annealing in a given job. The time step for all simulations was 0.01 
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ps. At the end of both the melting and the annealing, the simulations were 

interrupted so that the cluster could be rapidly quenched to a point where the 

maximum force on any atom was less than IzlO'^ eV/Bohr. Finally, this sequence of 

melting then annealing was repeated four times in a given job. This procedure 

should have a reasonable probability of determining the global minimnm and 

various local minima in the PES for a cluster of N atoms. 

Table III lists the minima determined by the above procedure. Only the 

lowest energy configuration and those within several hundred meV of this most 

stable geometry for a N atom cluster are shown.^ For temperatures less than 1000 

K those structures higher in energy have a very low Boltzmann probability of 

existing in thermodynamic equilibrium with the selected geometries. Ball and stick 

diagrams are shown in Fig. 5 for some of the geometries in Table III. The total 

energy difference between two N atom clusters in the lowest energy configuration 

and a N-1 atom cluster with a N+1 atom cluster in their respective minimum energy 

configurations is plotted in Fig. 6. This quantity indicates the stability of the lowest 

energy configuration of N atoms relative to the lowest energy structures of the 

neighboring N-1 and N+1 atom clusters. Note the great relative stability of the 

icosahedron (13.1), the double icosahedron (19.1) and the triple icosahedron (23.1). 

On the other hand, note the large tendency of the 14 and 18 atom clusters toward 

decomposition into their neighboring cluster sizes. 

^The structures 16.3 and 17.4 were not found using the melting then annealing 

procedure but were obtained by simple quenches of clusters with the same 

initial symmetry. They are included since they are the most stable 

configurations for LJ clusters. 
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Table III. Geometries and MD/MC-CEM binding energies for small Ni clusters. 

Index^ Description^ B.E. (eV/atom) 

4.1 Tjj tetrahedron -1.873 
5.1 Dgjj trigonal bipyramid -2.071 
6.1 0}^ octahedron -2.268 
7.1 Dgjj pentagonal bipyramid -2.369 
8.1 D2j trigonal dodecahedron -2.450 
9.1 C2y bicapped pent, bipyr. -2.518 
9.2 Dg^ tricapped trigonal prism -2.512 

10.1 Cgy tricapped pent, bipyr. -2.590 
11.1 C2y quadcapped pent, bipyr. -2.647 
12.1 Cgy quintcapped pent, bipyr. -2.729 
13.1 1}^ icosahedron -2.837 
14.1 Cgy capped (face) icosahedron -2.837 
14.2 C2Y capped (edge) icosahedron -2.836 
15.1 Dgjj l.s. 1-6-1-6-1 -2.882 
15.2 C2y bicapped icosahedron -2.869 
16.1 Dgjj l.s. 3-3-4-3-3 -2.903 
16.2 Cg l.s. 2-6-1-6-1 -2.899 
16.3 Cg tricapped icosahedron -2.893 
17.1 Tjj l.s. 1-6-1-6-3 -2.925 
17.2 ^2v -2.921 
17.3 Cl -2.920 
17.4 Cg quadcapped icosahedron -2.910 

®The index N.M signifies the configuration of a N atom cluster. For a given 
value of N the configurations are listed in decreasing stability. See Fig. 5 for ball 
and stick diagrams for most of these clusters. 
^The description includes the symmetry point group of the configuration and usually 
either a descriptive name or the layer structure (l.s.) of the cluster. The layer 
structure is specified in terms of the number of atoms in a given layer. Generally 
the layers are perpendicular to the principal axis of symmetry and the atoms 
contained within a layer are nearly coplanar. For example, the structure 15.1 has 
three atoms lying on the Cg axis separated by two hexagonal arrangements of atoms 
(c.f., Fig. 5). Thus, its layer structure is 1-6-1-6-1. 
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Table III. (continued) 

Index^ Description^ B.E. (eV/atom) 

18.1 Cgy quintcapped icosahedron -2.944 
18.2 Cg l.s. 1-4-1-5-1-5-1 -2.944 
18.3 Cgy l.s. 4-6-1-6-1 -2.940 
19.1 Dg^ double icosahedron -3.007 
20.1 C2y capped double icosahedron -3.018 
20.2 Dg^ l.s. 3-3-1-3-3-1-3*3 -3.012 
21.1 Cg 1.8. 1-6-1-6-1-5-1 -3.034 
22.1 Dg^ l.s. 1-6-1-6-1-6-1 -3.055 
22.2 Cj l.s. 2-6-1-6-1-5-1 -3.048 
23.1 Dg}^ triple icosahedron -3.088 
24.1 Ci -3.094 
25.1 Cj -3.115 

As for the LJ particles the most stable configurations of clusters of 7 to 12 

atoms are derived largely from the pentagonal bipyramid (7.1). The structure 8.1 

replaces one of the pentagonal atoms of structure 7.1 with 2 atoms. This structure 

is only a slight distortion of a capped pentagonal bipyramid which is reported to be 

the LJ global minimum.^^ The lowest energy structures for clusters of 9 to 12 

atoms are all derived by capping structure 7.1 and are exactly the same as the 

reported global minima found for the LJ potential.^^ Thus, clusters of 7 to 12 atoms 

are dominated by the pentagonal symmetry of structure 7.1. For the 13 and 19 

atom clusters, the icosahedral and double icosahedral configurations, respectively, 

are again characterized by points of fivefold symmetry. In contrast to the LJ 

clusters, however, several stable structures for clusters of 14 to 18 atoms were 

discovered that are not dominated by points of fivefold symmetry. Fig. 7 contrasts 
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8.1 Dgj 9.1 C 2v 9.2 Dgh 10.1 Cgy 

11.1 C, 2v 12.1 C 6v 13.1 Ih 14.1 C 3v 

. 5: Ball and stick diagrams for stable geometries of small Ni clusters obtained 
by a process of simulated melting and annealing. Usually the principal 
axis of symmetry lies along the length of the page. 
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16.2 a 16.3 C. 17.1 Td 17.2 C2 

17.3 Cl 17.4 C. 18.1 Cg^ 18.2 C. 

Fig. 5: (continued) 
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Fig. 5: (continued) 
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Energy Difference 
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Fig. 6: The total energy difference between the most stable configurations of 
neighboring Ni^, Nijr^^ snd Ni^_2 clusters. See text for a complete 
explanation of this difference. 
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the LJ minima, dominated by the symmetry of the icosahedron, with stable 

structures that are dominated by points of threefold and sixfold symmetries. In 

particular, note the perfect sixfold rotation axis in the structure 15.1. As shown in 

the bottom row of Fig. 7, this avis also dominates the structure of 16.1,17.1 and 

18.3. Energetically, the structures 15.1, 16.1 and 17.1 are all more than a 100 meV 

more stable than their LJ counterparts in the top row. In fact, there is a peak in 

Fig. 6 for the structure 15.1. Although the 14 and 18 atom structures in the bottom 

row are not global minima, they are only tens of meV less stable than those in the 

top row. Thus, the structure of clusters of 14 to 18 Ni atoms is not dominated by 

points of fivefold symmetry using the MD/MC-CEM potential. 

In order to test the accuracy of this prediction, an extensive MC simulated 

annealing of Ni^g using the full GEM potential was performed. This resulted in a 

structure with the exact same symmetry as structure 15.1. Its binding energy was -

3.051 eV/atom. In addition, the MD/MC-CEM structure 15.2 was used as the initial 

geometry in a CEM annealing simulation in which the initial temperature was 

sufficiently low so that it would be unlikely for the cluster to climb out of this local 

minima. This simulation resulted in a structure with the same symmetry as 15.2 

whose binding energy was -3.027 eV/atom. The cluster energy difference between 

these two CEM minima was 366 meV, indicating even greater stability for the 

structure with a sixfold axis and corroborating the MD/MC-CEM results. 

Due to the substantial increase in stability of 15.1 over 15.2 in CEM vs. 

MD/MC-CEM, we decided to investigate clusters 18.1 and 18.3 which are nearly 

equal in energy using MD/MC-CEM. The relative stabilities of these structures 
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13.1  

14 .1  15 .2  16 .3  17 .4  18.1 

19.1  A. 

14.2  15 .1  16.1 17.1  18 .3  

AE (meV) = +24 -203  -153  -252  +73 

Pig. 7: A comparison of two different structural progressions from the icosahedron to the double icosahedron. The 
geometries of the top row are the reported lowest energy structures for the U pair potential. The 
structures marked by an asterisk are the most stable geometries for the MD/MC-CEM potential. AE is the 
total energy difference between the bottom and top row structures. 
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within the full OEM potential was checked by simply scaling the coordinates by 

some factor. Both structures relaxed within CEM so that their equilibrium size was 

97.0% of their size within the MD/MC-CEM potential. Interestingly, the structure 

18.3 was more stable than structure 18.1 for all scaling factors between 95% and 

105%. At the minimum, the CEM total energy for structures 18.1 and 18.3 was -

55.838 eV and -56.020 eV, respectively, or increased stability of 18.3 by 182 meV. 

This change in the relative stability of the two structures would likely be conArmed 

by performing an unrestricted MC simulated annealing of the Ni^g cluster using the 

CEM potential. Such minimizations are very expensive now, but future 

improvements of the computational efficiency of CEM may allow a more complete 

comparison between the MD/MC-CEM and CEM predictions. 

The important point is that metaUic clusters modeled within either the 

MD/MC-CEM or the CEM formalism display significantly different structural 

characteristics than rare gas clusters modeled by pairwise Lennard-Jones potentials. 

These differences are due to the delocalized electronic nature of the bonding in 

metallic clusters. Such delocalization is more accurately accounted for within the 

CEM theory than within the MD/MC-CEM theory, and thus the former predicts 

even larger differences from Lennard-Jones type structures. 

Bimetallic clusters play a significant role in catalysis.^ ̂  Segregation of the 

constituent atom types leads to marked effects upon the catalytic selectivity of these 

clusters. Fig. 8a shows a CugNi^g cluster that was obtained from the melting-

annealing process mentioned previously. The overall structure of the cluster is a 

double icosahedron, as might be expected. The top and bottom axial atoms and 
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(A) 

Fig, 8: Several structures for a CugNi^g cluster obtained by a process of simulated 
melting and annealing. 
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(B) 

Fig. 8: (continued) 
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(C) 

Fig. 8: (continued) 
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those atoms in the top and bottom pentagonal planes have a coordination of 6; those 

in the middle pentagonal plane have a coordination of 8; and, the two inner Ni 

atoms have a coordination of 12. The average coordination is 6.00 for Cu and 7.69 

for Ni. The separation of the Cu atoms into two groups in Fig. 8a has little 

significance upon the energy of the cluster. In fact, a similar structure in Fig. 8b 

with all the Cu atoms grouped together in the lower sixfold coordinated sites is 0.05 

eV more stable than the cluster shown in Fig. 8a. In contrast, the structure in Fig. 

8c with one interior Cu atom is 0.54 eV less stable than the cluster in Fig. 8a. Thus, 

segregation to the "surface" is exhibited even by this small bimetallic cluster. 

It would be difficult to predict such segregation based upon the dimer binding 

energies^'' of Dq=2.08±.25, 2.01±.08 and 2.068±.01 eV for NiCu, Cu2 and Ni2, 

respectively. The surface firee energies^® of 1.79 and 2.38 J/m^ for Cu and Ni would 

allow such a prediction, but one could not be sure that such a quantity is appUcable 

to a 19 atom cluster. MD/MC-CEM calculations provide the theoretical basis for 

determining the effects at any cluster size. 

As a third illustration and first example of a dynamical process, we consider 

the sticking of Cu atoms on the Cu(100) surface using the functions AFq for Cu. 

The MD-LE technique^®'®'^® was used to keep the surface at 77 K. Our intent was 

to determine the extent of transformation of the large energy released by formation 

of the Cu-Cu(lOO) bond (2.7 eV) into translational energy of the Cu atom on the 

surface. Since the diffusion barrier is only about 0.4 eV^^ (and is 0.47 eV using 

MD/MC-CEM theory), this transformation had been postulated as leading to 

epitaxial fUms^^ and had even been found in simulations using LJ models.^^ In 
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Fig. 9, we show time frames in the collision of Cu with a small part of the Cu(lOO) 

surface which clearly indicates that the Cu is adsorbed directly into a four-fold site 

without any ballistic motion. (The simulation used a much larger number of moving 

Cu atoms, nearly 250, but only a few are shown for clarity.) These snapshots are 

representative of all tr^ectories which demonstrated no motion of the incident Cu 

atom out of the original unit cell. 

The difGcult part of the above prediction is the balance between two features: 

the transformation of the binding energy into translational energy of the adatom vs. 

dissipation of the binding energy into the lattice. It is not possible to guess which 

one will dominate. In fact, we have performed a similar simulation using a LJ 

potential fit to the Debye frequency and the lattice constant of Cu.^ It resulted in 

considerably greater transformation of the released energy into translational energy 

of the Cu adatom. Using a LJ potential fitted to the cohesive energy and the lattice 

constant of Cu,^ or a Morse potential fitted to all three pieces of data,^ resulted in 

much better agreement with the MD/MC-CEM predictions. Thus, the LJ(12,6) form 

can be too stiff for a metal^"^ and can thus yield the wrong answer. (A stiffer 

material acts like a rigid surface which leads to large mobility.) The MD/MC-CEM 

theory gets the important features right: diffusion barrier of 0.47 eV, Debye 

frequency and surface energy. (Note that relaxation of the initial Cu surface plays 

no role in this problem.) 

As the fourth and final illustration, we consider the scattering of Ar from 

clean and H(lxl) covered Pd(lll) surfaces. The incident atom, adsorbates and 

substrate were all described by the MD/MC-CEM interaction energies and forces. 
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Cu-Cu(lOO) 

INITIAL KINETIC ENERGY OF GAS = 0.25 EV 
INCIDENT ANGLE = 0° 

SURFACE TEMPERATURE = 77 K 

TIME INCREMENT = 0.20 PS 

Fig. 9: A typical trajectory of a Cu atom incident on Cu(lOO). 
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with AT and Pd using AFQ and H using AFp. AFQCAT) is shown in Fig. 10 as 

determined from the diatomic^^^ and bulk binding curves. The particular values for 

the bulk modulus, lattice constant and cohesive energy are 2.86 x 10^ J/m^ 5.31 

and 0.0800 eV,^®^ respectively. For the rare gas atoms the bulk determines 

the low density points and the diatomic repulsive potential determines the high 

density points, a reversal of all the other systems. Adjustable parameters are 

absent from all these calculations. Approximately 1000 trajectories were completed 

with an initial kinetic energy of 1.0 eV and initial incidence angle of 30° for the Ar 

atom. Fig. 11 shows the angular distributions. The distribution maximum occurs at 

34° for both the scattering from clean and H(lxl) covered surfaces. The average 

final kinetic energy of the scattered Ar at the distribution maxima is 0.70 eV for the 

clean surface and 0.56 eV for the H(lxl) covered surface. The scattering from 

adsorbate covered surfaces, considered so difficult, is rather simple using the 

MD/MC-CEM forces in conjunction with a new scattering code.^^ 
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Fig. 10: The MD/MC-CEM covalent embedding function for Ar. The inset shows the 
bulk region in detail. 
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Fig. 11: Angular distributions of Ar atoms with 1.0 eV of initial kinetic energy 
scattered from clean and H covered Pd(lll). The azimuthal angle is denoted 
as ({i and the angle from the surface normal is denoted as 0. 
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IV. SUMMARY AND CONCLUSIONS 

We have presented the MD/MC-CEM theory, a conceptual and formal 

simplification of the OEM method, that can be used directly in large scale MD and 

MC simulations. This theory incorporated, via an approximate new embedding 

function, the original correction for kinetic-exchange-correlation energy differences 

between the real system and the memy atom-jeUium systems. As a result of this 

approach, a sophisticated, accurate many-body potential in the MD/MC-CEM method 

can be evaluated at about one-half the speed (per pair of atoms) of a simple LJ(12,6) 

pairwise additive form. Examples were provided for the Ni, Pd and Ar/H/metal 

systems. 

Several brief illustrations of the application of this method to large systems 

were presented. These included relaxation of metal surfaces, structure of pure Ni 

and mixed NiCu clusters, sticking of Cu on Cu(lOO), and the scattering of Ar from H 

covered Pd(lll). 

It is worthwhile to emphasize that the embedding functions in the MD/MC-

CEM method do not have to be redetermined for each new system. For example, 

once the fimctions are known for Ni and Cu, the full Nij^Cuj^ system can be treated 

for any number of Ni and Cu atoms. Once they are known for Ar, H and Pd, 

scattering of Ar from H/Pd(lll) can be done at any coverage, as can the scattering of 

Ar from Ar covered Pd(lH); any other face can be used for the Pd also. With the 

previous embedding functions for Ni and Cu, one can scatter Ar from these surfaces 

also. There is no refinement and adjustment of parameters to experimental data for 

any one system, a tedious "art". 
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There will be systems and observables for which the new MD/MC-CEM 

method is not sufficiently accurate. Indeed, the illustration of surface relaxations 

demonstrated precisely this feature. Our limited experience at present would 

indicate that processes and effects that are dependent upon energy differences of 

less than about 0.1 eV have to be treated with caution using MD/MC-CEM. The 

basic problem is that incorporation of the kinetic-exchange-correlation energy 

difference into the embedding function is unlikely to be so accurate. In these cases, 

one must resort to more accurate and computationally intensive approaches. 

Possibly, these approaches could simply be used to check some of the MD/MC-CEM 

predictions; the full CEM formalism is one method capable of such a role. On the 

other hand, more direct approximations of AG could be implemented than the one 

currently employed in the MD/MC-CEM formalism. These improved approximations 

would more accurately account for variations in electron density environments. 

For many situations such small energies are not critical. Three cases were 

illustrated herein: structure of (a number of) pure Ni and mixed NiCu clusters, 

sticking of Cu on Cu(100), and the scattering of Ar from H covered Pd(lll). For 

such problems, the capabilities provided by the accuracy of the MD/MC-CEM PES 

along with the very fast force evaluations should open new horizons in the 

treatment of the structure and dynamics of complicated many-body systems. 
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ABSTRACT 

The numerical evaluation of integrals in three spatial dimensions is a 

computationally intensive operation that assumes a significant role in many 

scientific computer programs. This operation is readily parallelizable on a variety of 

computer architectures. In particular, we demonstrate that it can be efficiently 

performed on a hypercube computer using a simple algorithm. The observed 

speedup is nearly linear with increasing numbers of processing elements. The 

hypercube performance is competitive with a shared memory, multiprocessing 

supercomputer. Details of the implementation and analysis of its performance are 

discussed in relation to an application within a computational chemistry code based 

on a corrected effective medium theory. 
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I. INTRODUCTION 

Pioneering studies have demonstrated the speedup available for scientific 

calculations by means of massively parallel computing^'^. Multicomputers consist of 

large numbers of processors plus local memory connected by high speed 

interprocessor communication networks. These are now capable of Gflops (i.e., 10^ 

floating point operations per second) performance and will undoubtedly soon be 

capable of Tflops (i.e., 10^^ flops) performance. Since their memory is distributed, 

these new supercomputers can be scaled to many thousands of processors. However, 

the distributed memory and interprocessor control can require development of new 

carefully crafted algorithms. 

For more conventional supercomputers, current peak performance rates are 

on the order of several Gflops. These rates are attained by coupling ten or fewer 

very fast processors together with a shared, global memory. The number of 

processors on such shared memory architectures is limited since memory contention 

will eventually degrade performance®'^. 

In this paper, we consider the numerical evaluation of integrals by means of 

quadrature rules. This is a critical component of many scientific calculations. In 

particulsir, quantum chemical calculations based on density functional theory 

approximate the exchange and correlation energies of a many electron system by 

three dimensional integrals of the system electron density^. These integrals cannot 

be computed analytically since their integrands involve non-integer powers of the 

electron density. As a result, much research^'^ has focused on optimal numerical 

algorithms for the evaluation of these integrals. This research has anticipated the 
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significant advances of massively parallel computing technology. 

As a more concrete example of the kinds of theoretical problems, consider the 

structure and energies of metal clusters in the size range from 5-25 atoms. These 

are too large and complex to determine the structures directly from experiment. 

Thus, chemical reactions such as hydrogen and ammonia adsorption^^'^^ are used 

experimentally to probe the structure of these metal clusters. This provides indirect 

information which needs to be complemented by accurate computational models. 

Modeling such systems, however, requires sophisticated interaction potentials. 

Using a corrected effective medium (CEM) method^^'^® based on density functional 

theory, we have predicted the structures of metal clusters for Ni and Pd^®. To 

make such predictions, we had to perform unconstrained optimization of the cluster 

geometries within the CEM method, a procedure which was made possible only by 

the use of a hypercube computer. In light of the predictions of CEM, the 

experimental data can be rationalized, and a new type of growth sequence for metal 

vs. rare gas clusters could be detailed. Ongoing research involves the study of 

uptake of hydrogen by these metal clusters, a project that would not have even been 

initiated without the availability of the hypercube. Similar advances in modeling 

capabilities should be realized as physical scientists leam to use multicomputers. 

The central development of this paper is a simple and efGcient 

implementation of a numerical integration algorithm on a distributed memory 

computer. This multicomputer has a hypercube network of processing elements. 

The issues of partitioning the problem among the processors and of efficient 

interprocessor communication are discussed. To help the reader understand the 
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chemical context of this problem, a review of the use of density functionals in the 

OEM theory is presented in Section II. The quadrature scheme implementation on 

both a hypercube and two shared memory computers is discussed in Section III, 

while its performance on the various architectures is analyzed in Section IV. 

Throughout these sections our emphasis will be on the hypercube implementation. 

Concluding remarks are given in Section V. Details of our implementation on a 

hypercube computer are included in several appendices. 
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II. THEORETICAL AND COMPUTATIONAL DETAILS 

Consider a system of N atoms {Aj, i=l,...^. The vectors {Rj, i=l,...,N} specify 

the positions of the nuclei, while the vectors i=l,...N} specify a point in space 

relative to the nuclei. Within effective medium type theories the interaction 

energy of this set of atoms is approximated initially as a sum of the N interaction 

energies between each atom and a medium that models the effect of the remaining 

N-1 atoms. This approximation reduces the problem from determining the 

interaction energy of an N-body system to determining the interaction energy of N 

one-body systems. The effective medium interacting with atom is defined as an 

electron gas of uniform density along with a compensating uniform positive charge 

density. Usually, this effective medium is referred to as jelUum and its interaction 

energy with an atom as an embedding energy. The intent of this approximation is 

to capture a significant portion of the interaction between an atom and a delocalized 

distribution of electrons. 

Several corrections are added to this initial approximation to obtain the 

complete expression of the CEM interaction energy: 

N 

AE({A,}) = 22 AE/\; + AV^ + AG({A,)) . (D 
1=1 

As explained above, the first term is the sum of embedding energies for each atom 

Aj embedded into jellium of density n^, AEj(Aj; n^). The second corrects for the 

difference in Coulomb interaction energies between the N-atom system and the 

atom-in-jellium systems, AVQ. The third corrects for the difference in kinetic, 

exchange and correlation interaction energies between the N-atom system and the 
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atom-in-jellium systems, AG. These energy corrections arise due to differences in 

the electron and positive charge distributions between the N-atom and the N atom-

in-jelhum systems. These corrections have been shown to be important in the 

prediction of structures of metal clusters We do want to emphasize that CEM 

provides a non-self-consistent but rather accurate description of many aspects of 

metaUic bonding, in contrast to simple empirical interaction potentials which are 

incapable of treating metallic bonding. A general review of the CEM method can be 

found in ref. [17] for the reader interested in the theoretical basis, relationship to 

other density functional based methods, and further applications. 

Within CEM the correction energies are calculated via energy functionals of 

the total electron density of a system. The electron densities are approximated as a 

superposition of the spherical electron densities of isolated atoms and the jelUum 

electron density. For the N-atom system the electron density is given by 

p(?) = S Pi(^ - ̂  
i=l 
—> —> 

where p^(r - Rj) is the spherical electron density of atom Aj. (The electron density of 

atom A| is referred to as r - R^) in previous papers. The necessity for 

shorthand notation in subsequent equations precludes this earlier notation here.) 

By far the most computationally intensive part of Eq. (1) is the evaluation of 

the kinetic, exchange and correlation interaction energies. The difference of these 

energies between the N-atom system and the N atom-in-jellium systems is written 

as 

where n^ is the electron density of the jellium into which atom is embedded. For 
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N 

AG = G({Aj}) - Y, [G(A,+n,)-G(n,)] , 
1=1 

each system these energies are expressed in terms of functionals as 

(3) 

G = c/f(p, |V,p|: )dr , M) 

where c is a constant and the integrand is an explicit function of both the system 

electron density, p = p( r^), and its gradient. While local density functionals depend 

only on the density (e.g., the local kinetic energy functional is proportional to 

more accurate, non-local density functionals also depend on the gradient of the 

density. As indicated in Eq. (4), the non-local functionals in our work depend 

explicitly on the squared magnitude of the total electron density gradient^®» Due 

to the additive density approximation in Eq. (2), this variable is simply determined 

by summing the atomic electron density gradients. 

ivr= 
1=1 3x,J [i4ï èi dz. 

(5) 

where the subscripted variables are with respect to the atom (e.g., x^ = x -

where is the x-coordinate of atom A^). 

Each of the N atom-in-jellium systems, G(Aj^ + n^), depends on the atomic 

coordinates only indirectly through the jellium electron density, which is 

proportional to the overlap of the electron densities of atom A^ with all other atoms. 

The jellivun electron density into which an atom is embedded measures the average 

electron density about the atom due to all other atoms. It explicitly depends on the 

atomic coordinates. G(A^ + n^) can be evaluated once the jellium density has been 



www.manaraa.com

74 

determined. The computational effort involved is minimal since the integration is 

about a single center with spherical symmetry. Adding the uniform electron density 

of jellium to the spherical electron density of an atom maintains the atom's spherical 

symmetry in the total electron density of an atom-in-jellium system. Furthermore, 

since the integral is not directly dependent on the atomic coordinates, it can be 

tabulated for a range of jellium densities and then evaluated with even less 

computational effort via piecewise cubic interpolation. 

The kinetic, exchange and correlation energy of the N-atom system, G({A^}), 

poses the central computational challenge. Its evaluation entails a multi-center, 

three-dimensional integral over all space that varies explicitly with any change of 

the atomic coordinates. Four orders of magnitude more time are needed for this 

calculation than the combined total for all other terms in the OEM interaction 

energy. Thus, in the remainder of this paper, our emphasis will be on the efficient 

evaluation of this term. 

Much of our research requires evaluation of the interatomic forces 

determined by the OEM potential. Their evaluation is again overwhelmingly 

dominated by the computation of the derivative of G<{Aj}). The analytic derivative of 

Eq. (4) with respect to the coordinates of atom A.- is given by 

V({A,}) = c/(V^p)^-(V^|V,p|^) (6) 
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where the partial derivatives of f can easily be determined for any specific 

functional. When Eqs. (2) and (5) are differentiated with respect to the coordinates 

of atom many of the terms vanish. The remaining terms only require radial 

derivatives of the atomic electron densities since these densities are spherical. 

Specifically, the derivatives of Eqs. (2) and (5) are expressed as 

\P = 
8r^ J 

and 

(7) 

= - 2  
^  '  f j  S tj ^  i j  Tj d y  ij d z  ̂  

^Pj  1  9pj  

J "i ;i 
/ / 

where rj is the unit vector parallel tor-In addition to the atomic electron 

densities and gradients needed to evaluate the potential, second radial derivatives of 

the atomic electron densities are needed to evaluate the interatomic forces. The 

same grid of quadrature points can be used to evaluate the force on atom Aj as to 

evaluate the force on any other atom. Thus, most of the work can be overlapped in 

order to evaluate the 3N integrals determining the interatomic forces in a N-atom 

system. This calculation requires about twice as much time as the evaluation of the 

potential. In contrast, a central difference evaluation of the forces would require 6N 

times as much work. 

The multi-center integrands for the N-atom system are dominated by the 

multiple cusps of the system electron density located at the atomic nuclei. A multi-

center integral can be efficiently evaluated by decomposing it into a set of single 

center integrals, {g-( r^), i=l,,..,N}®'®. For any particular multi-center integrand, f, a 
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weight function can be assigned to each center (i.e., atom) so that 

/f(î)dr = è/6(naf, (9) 

where gj( r ) = Wj( r ) fl r ) and the sum of all weights at any point in space is unity. 

Each weight function is approximately unity near its center and vanishes near any 

other center. In effect, this procedure partitions the three dimensional space of the 

system into "fuzzy" cells about each center. Sufficient accuracy for our applications 

can be attained by defining the space partitioning weights as 

w,(r) = / Z p.(r-fi,)^. (10) 
j=i  

This weight requires little additional computation since it depends on the atomic 

electron densities that must be evaluated anyway. (The use of was found 

empirically to give better accuracy for any number of integration points compared to 

either p- or p-^, but there is nothing fundamental about this fact.) 

Since it is dominated by only one cusp, each single center integral can be 

straightforwardly evaluated by a product of Gaussian quadrature schemes. We use 

Gauss-Laguerre radial along with Gauss-Legendre and Gauss-Chebyshev angular 

quadratures. Many other single center quadrature schemes have been presented for 

similar applications^'^. Such quadrature rules approximate an integral by the 

discrete sum, 

fe,(nàr (w 
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where and are the quadrature points and weights, respectively. Typically, on 

the order of 10^ to 10'^ quadrature points per center are needed in order to attain 

precision commensurate with the accuracy of the CEM method (i.e., 0.005 eV/atom). 

To summarize the computational problem, we note that the electron density 

for each atom, its gradient and, in the case of force evaluations, its second derivative 

must be evaluated at every quadrature point. This is accomplished efficiently by 

interpolation of evenly spaced tabulated values and thus is not a computational 

bottleneck. Even with this efficiency, the evaluation of the integrands such as 

fïp,Vp) in Eq. (4) at each quadrature point still requires a large number of floating 

point operations. We have determined an approximate number based on the 

weights shown in Table I for specific operations. In order to compute G({Aj}), there 

are 69 + 34 N floating point operations per quadrature point during potential 

evaluations and 104 + 64 N floating point operations per quadrature point during 

force evaluations. If 10^ quadrature points per integration center (i.e., atom) are 

used to calculate forces in a 10 atom system, then more than 70x10^ floating point 

operations must be performed in order to compute the analytic derivative of GK{A^}). 

An appreciation of the magnitude of our computations is gained when one recognizes 

that on the order of 10^ force evaluations are needed for the structural optimization 

of a cluster of metal atoms while on the order of 10^ evaluations are needed for a 

molecular dynamic simulation of H uptake by a metal cluster. Thus, as a rule of 

thumb, (10^ -10^) million floating point operations are required for each 

structural optimization or simulation. At a rate of 100 Mflops, the CPU time 
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Table I. Floating-point operation counts^. 

OPERATION WEIGHT 

Plus, Minus, Times 1 

Comparison 1 

Real-Integer Conversion 1 

Reciprocal 3 

Divide 4 

Square Root 4 

Sine, Cosine, Tangent, Arctangent 8 

Exponential, Logarithm 8 

^Based on the system used at Lawrence Livermore National Laboratories. 

required for such calculations is (1-10^) N^ sec. Calculations for systems of up to N 

s 100 are feasible. 

In short, one of the chief computational challenges posed by the CEM method 

involves the numerical integration of the density functional. The integration 

algorithm implemented requires thousands of quadrature points per atom. The 

computation associated with each point is substantial and scales linearly with the 

number of atoms, but is largely independent of the other points. 
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m. PARALLEL QUADRATURE SCHEME 

Code structures that iterate over a sequence of data elements often are 

readily parallelizable. Fig. 1 illustrates the significant amount of data parallelism 

within the quadrature scheme. In the figure, loop D is only necessary for the 

evaluation of the derivative of GK{A^}). Loops C and D are nested within loop B 

which is nested within loop A. In principle, each of the 10^ to 10^ points specified 

by the loops A and B could be distributed to a separate processor since they are all 

independent of each other. On each processor the value of the integrand could be 

computed at the given quadrature point and then multiplied by the quadrature 

weight. The results on the individual processors would be accumulated to yield the 

final result. Currently, we have not gone to this extreme since the number of 

processors is 8-1024 for the computers used in our research, which is significantly 

smaller than the total number of quadrature points. Because of the large variation 

in the number of processors on these machines, we have implemented the code in a 

variety of ways dependent on the architecture of specific machines. The goal is of 

course to exploit the parallelism within this algorithm. 

A. Distributed Memory Architectures 

This work has been greatly facilitated by the implementation of the 

quadrature scheme shown in Fig. 1 onto a nCUBE 2 hypercube. A hypercube 

network of dimension M has 2^ processing elements. Each processing element or 

node is connected to M neighboring nodes. In a hypercube of dimension of 4, for 

instance, node 0 can communicate directly with nodes 1, 2, 4 and 8. Development 

work was largely completed on the hypercube at the Scalable Computing Laboratory 
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General Code Structure 

Loop A) over the integration centers 

* ~ 10 to 100 iterations 

* each iteration independent of others 

Loop B) over the quadrature points 

* > 10,000 iterations 

* each iteration independent of others 

Loop C) over the atoms 

* ~ 10 to 100 iterations 

Loop D) over the atoms (derivative only) 

* ~ 10 to 100 iterations 

* accumulate force on each atom 

Fig. 1: Diagram of the code structure of the numerical quadrature algorithm. 
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of Ames Laboratory, Ames. Currently, this machine has 128 nodes with 16 Mbytes 

of memory on node 0, 4 Mbytes on nodes 1 through 64 and 1 Mbyte on nodes 65 

through 127. For large scale simulations we have also used the 1024 node 

hypercube at the Massively Parallel Computing Research Laboratory of Sandia 

National Laboratories, Albuquerque. Each node on this larger hypercube has more 

than 4 Mbytes of memory. For the nCUBE 2 the theoretical peak processing rate^^ 

of each node is 2.3 Mflops for double precision arithmetic. An ensemble of large 

numbers of these nodes makes the hypercube competitive with shared memory 

supercomputers provided a significant fraction of the peak speed is attained. A 

workstation connected to the nCUBE 2 hypercube provides users v/ith a convenient 

interface. All program modifications, compilations, loading and debugging are 

performed on the host workstation. 

The results presented herein, including the timings in the subsequent section, 

were obtained using release 2.2 of nCUBE 2 software. Intemode communication is 

accomplished using the nwrite and nread nCUBE 2 library routines. Appendix A 

presents an example of their use in our code. The CEM code itself is written in 

standard FORTRAN 77. 

The relatively small amount of memory per node is one of the first obstacles 

encountered when implementing a large code on a distributed memory machine. 

Currently, CEM requires more than 2 Mbytes of memory. If the code was 

implemented as one single node program, nodes with less than this amount of 

memory would be unusable for our application. In order to overcome this limitation, 

the CEM code was divided into two node programs. Additionally, a program on the 
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host workstation opens a subcube of dimension specified by the user and, then, loads 

the node programs onto it. On this subcube, the primary node program is loaded 

onto node 0 only. Everything except for the numerical integration is executed by 

this program. It reads an input file, prepares and sends to the secondary program 

any data needed for subsequent calculations. The secondary node program only 

evaluates the integrals and is small enough so that it can be loaded onto nodes with 

only 1 Mbyte of memory. After the secondary program has received the preliminary 

data, it waits to receive atomic coordinates from the primary program. Once the 

secondary program has received this data and evaluated the integrals, it sends the 

results to the primary program. The primary program on node 0 sends messages to 

the secondary program on all nodes using the broadcast mode of the nwrite routine. 

It receives messages from the secondary program on node 0. It is not necessary for 

the secondary program on the other nodes to send messages to the primary program. 

Although more programming and more message passing are required than would be 

the case for a single node program^ this approach efficiently uses the available 

memory. In our application, the additional communication overhead is negligible. 

The number of atoms is usually less than the number of available nodes since 

the computational intensity of each single center integral limits the system size to 

less than two hundred atoms with most computations involving systems of less than 

50 atoms. Thus, the numerical integration is not processed concurrently by 

distributing the centers of integration across the nodes of a subcube since this would 

not allow scaling up to large numbers of processors. 

Instead, the quadrature points for each center are distributed across the 
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nodes since the number of the former generally exceed the latter by a factor greater 

than ten. The computational work associated with each point varies only slightly 

depending on its radial distance from the center. Each single center integral is 

evaluated efficiently by assigning a subset of the total number of quadrature points 

to each node. The points are distributed so that the subsets differ in number of 

points by at most one. Each subset includes points of various radial distances from 

the center. Appendix B details the coding necessary for this distribution. This 

approach balances the computational work any node performs in comparison to the 

others. The observed speedup scales almost linearly with the number of processors 

as long as the number of quadrature points is significantly greater than the number 

of processors. When the number of processors increases in future machines, single 

center integrals could be evaluated by small subcubes of a larger cube. In this way, 

ensembles of subcubes could evaluate several of these single center integrals at once. 

In view of Eq. (11), each node is given a subset of quadrature points for 

which it computes a partial sum of the integrand values multiplied by the 

quadrature weights. As specified in Section II, the evaluation of the integrand at 

each point requires a significant amount of computational work. Once all nodes 

have completed this stage, they must communicate with each other. Every step in 

this communication process requires an exchange of the partial sums between 

neighboring nodes followed by the addition of the two numbers to yield a new sum 

on every node. For a cube of dimension M the value on each node after M steps is a 

global sum of the original partial sums. Fig. 2 illustrates this process for a cube of 

dimension 2. The segment of code given in Appendix A performs this 
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2 ) ; ^ ( 3  

STEPl STEP 2 

Fig. 2: Intemode communication scheme illustrated for a hypercube of 
dimension 2. 
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communication. This intemode communication scales logarithmically with the 

number of processors and requires very few floating point operations. Therefore, its 

execution time is negligible in comparison to that required for the evaluation of the 

integrand. 

Fig. 3 summarizes the implementation of the quadrature scheme onto the 

hypercube computer. The algorithm is divided into sections of computational work 

and of intemode communication. Each node computes a partial sum independent of 

all others. Once all the computational work is completed, the nodes must 

communicate in order to accumulate the partial sums into a single global sum. This 

communication synchronizes the nodes. The node that does the least amount of 

computational work reaches the communication section and then waits for the other 

nodes to complete their work. This idle time can be a significant source of overhead 

involved in parallel processing. Therefore, it is important to reduce this idle time by 

evenly distributing the work to the processors. As mentioned previously, the load 

balance is enhanced by distributing to each node quadrature points that have a 

range of radial distances to the integration center. 

B. Shared Memory Architectures 

In Section IV comparisons of the potential and force evaluation times are 

made between the nCUBE 2 computer and two shared memory multiprocessors. 

One of these multiprocessors is a 8 processor Silicon Graphics 4D/380S computer. 

Each of these processors has a theoretical peak processing rate^^ of 13.2 Mflops. 

The other multiprocessor is an 8 processor Cray 2 supercomputer. The theoretical 

peak processing rate^^ for each of these processors is 488 Mflops. 
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Hvpercube Code Structure 

Begin computation on each of 2^ nodes 

Loop A) as in Fig. 1 

Loop B) over a subset of quadrature points 

* > 10,000 / 2^ iterations per node 

Loop C) as in Fig. 1 

Loop D) as in Fig. 1 

Begin intemode communication 

* accumulate partial sums across the nodes 

* overhead oc M 

Fig. 3: Diagram of the code structure of the numerical quadrature algorithm 
as implemented on a hypercube computer. 
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For such a small number of processors on the shared memory machines, 

paraUelization of the algorithm shown in Fig. 1 is implemented by distributing the 

centers of integrations to separate processors. Compiler preprocessors on these 

machines automatically insert parallel processing code as instructed by the 

programmer using compiler directives. A balanced workload on all processors is 

maintained by dynamically distributing the single center integrals one at a time to 

available processors. 

To take better advantage of the smaller number of very powerful vector 

processors available on the Cray computer, the angular coordinates of the 

quadrature points are specified within loops C and D in Fig. 1. This modification 

ensures that all inner loops vectorize with more than 64 iterations even for systems 

of a small number of atoms. 

On a different note, we mention that this algorithm for a shared memory 

computer would also allow concurrent processing on a network of workstations. It is 

unlikely that a workstation network would approach the number of processors on 

the nCUBE 2. 



www.manaraa.com

88 

IV. COMPUTATIONAL PERFORMANCE 

The peak theoretical performance for an nCUBE 2 processor is 2.3 Mflops. 

Using the weights in Table I, the measured rates for our implementation of the 

quadrature algorithm are 1.1 and 1.2 Mflops for potential and force evaluations, 

respectively. These rates have been observed for systems ranging from 16 to 128 

atoms. Little extra effort beyond compiling the FORTRAN source code is needed to 

attain this level of performance on each node. Note, these rates are averages over 

the inner loops of the quadrature scheme shown in Fig. 1. Since a significant 

number of memory references are required within these loops, the observed rates are 

reasonable. More floating point intensive loops should demonstrate faster rates. In 

fact, a rate of 1.65 Mflops is observed for loop D of the analytic derivative. 

The estimated ratings per processor for force evaluations on the Silicon 

Graphics and Cray 2 computers are 4 Mflops and 80 Mflops, respectively. The 

observed Mflops as a fraction of the theoretical peak rate for the nCUBE 2 

hypercube, Silicon Graphics and Cray 2 processors is 0.52, 0.30 and 0.16, 

respectively. The memory references inside the inner loops degrade the performance 

of the more powerful processors significantly more than the nCUBE 2 processor. 

Massively parallel computing can suffer from large interprocessor 

communication overhead. Table II lists the ratio of the hypercube communication to 

computation time in the quadrature scheme in units of parts per thousand. Each 

entry includes a range of values. The node that does the most work has the 

TwiniTTinm communication overhead, while the node that does the least work has the 

maximum. Increasing the number of nodes decreases the computational work per 
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Table II. Ratio of the hypercube communication to computation time in the 
quadrature algorithm expressed in units of parts per thousand.^ 

#of # of atoms 

nodes 16 32 64 128 

16 0.1 - 1.0 0.0 - 3.0 0.0 - 4.5 0.0 - 2.9 

32 0.3 - 2.1 0.1 • 4.1 0.0 - 5.0 0.0 - 3.3 

64 0.7 - 3.6 0.3 - 6.5 0.1 - 5.6 0.1 - 3.5 

128 1.8 - 5.9 0.6 - 9.2 0.3 - 6.9 0.1 - 4.5 

^These values were determined during the evaluation of forces for Ni^ clusters. 

node and increases the amount of message passing. As a result, the communication 

overhead should increase. Conversely, increasing the number of atoms increases the 

computational work more than the intemode communication and the overhead 

should diminish. The minimum values listed in Table II clearly reflect these trends. 

However, the maximum values do not decrease with increasing numbers of 

integration centers (i.e., atoms). The evaluation of many single center integrals 

accentuates any work load imbalance due to the distribution of quadrature points. 

Further optimization might reduce the spread of values shown in Table II by a more 

even distribution of work. Nevertheless, the overhead of this communication 

between nodes is never more than several percent of the computational work even if 

extrapolated to very large hypercubes. 

The advantage of massively parallel computing depends critically on whether 

the efficiency of an algorithm scales linearly with increasing numbers of processors. 

Table III lists the time required to evaluate the interatomic forces in Ni^ clusters of 

various size. More than 99% of this time is needed to evaluate the analytic 
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Table III. Force evaluation time (sec.) for Nij^ clusters on the nCUBE 2 
computer.® 

# of atoms # of 

nodes 16 32 64 128 

16 11.89 39.72 137.98 482.31 

32 5.95 (1.000) 

64 2.99 (0.999) 

128 1.50 (0.998) 

256 0.79 (0.989) 

512 0.40 (0.988) 

19.90 (0.999) 

9.98 (0.999) 

5.02 (0.998) 

2.63 (0.990) 

1.34 (0.988) 

69.06 (1.000) 

34.60 (0.999) 

17.37 (0.999) 

8.96 (0.993) 

4.55 (0.991) 

241.39 (1.000) 

120.91 (0.999) 

60.67 (0.999) 

30.81 (0.996) 

15.62 (0.994) 

^he numbers in parentheses are values of the scaling parameter, p, defined Eq. 

derivative of (]({A^}). The time required to evaluate other terms in the potential is 

practically negligible. As the number of nodes is increased by factors of two, the 

speedup in the evaluation time is always greater than 1.9. The scalability of an 

algorithm can be analyzed in terms of the formula, 

where t^ is the evaluation time using a cube of dimension M. In this definition the 

evaluation time on a four dimensional hypercube is used as a reference to examine 

how the efficiency of the algorithm scales with increasing hypercube size. For 

perfect linear scaling the exponent, p, would be one. Values for this parameter are 

listed in parentheses in Table III. As evident in the table, the value of this 

exponent is slightly less than one for every entry. The scalability would be improved 

by using one node program instead of two and by parallel processing the other terms 

(12). 

«M - (12) 
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of the GEM potential also. In spite of these additional sources of overhead, the 

algorithm currently implemented scales almost linearly with increasing number of 

nodes. 

The performance of the hypercube is competitive with more conventional 

shared memory supercomputers. Fig. 4 shows the time needed to evaluate the 

interatomic forces in a Nig^ cluster. For the Silicon Graphics and Cray 2 

multiprocessors, timings for 2, 4 and 8 processors are shown. For the nCUBE 2 

computer, timings for 32,128 and 512 processors are shown. As the number of 

processors is increased, the nCUBE 2 performance eventually equals the Cray 2 

performance. For our application 64 nCUBE 2 nodes are approximately equivalent 

to a CRAY 2 processor. 

The data for the Cray 2 computer was obtained in a multi-user environment, 

while the data for the Silicon Graphics and nCUBE 2 computers were obtained in a 

dedicated, single user environment. Note that the two shared memory computers 

scale slightly less than linearly with the number of processors; the exponents "p" in 

Eq. (12), scaled to the two processor (M=l) values, are (0.96, 0.94) and (0.96, 0.84) 

for (4, 8) processors on the Silicon Graphics and Cray machines, respectively. The 

value of 0.84 for the 8 processor Cray likely reflects memory contention in the multi­

user environment. There is nothing else in the comparisons that would favor the 

nCUBE 2 over either of the shared memory machines. 
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Ni64 Force Evaluation 

nCUBE2 
Cray 2 

cpus 

SGI 
Cray 2 

512 nCUBE2 

. 4: Time required to evaluate the interatomic forces in a Nig^ cluster. 
Note that the number of Silicon Graphics and Cray processors increase 
by a factor of two between data points while the nCUBE 2 increases 
by a factor of four. 
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V. CONCLUDING REMARKS 

Numerical integration of complex integrands can be accomplished efficiently 

on a hypercube. As presented here, implementation onto the nCUBE 2 hypercube is 

straightforward. The intemode communication overhead is negligibly small even for 

hypercubes of dimension 9. The large, uniform amount of computational work 

associated with each quadrature point facilitates a well balanced work load on all 

nodes. Furthermore, the number of quadrature points is sufficiently large that the 

problem could be scaled to many more than a thousand processors. As a result, the 

performance of the hypercube can surpass that of a shared memory supercomputer. 

The techniques presented here could be used successfully for other problems. 

All that is necessary is a data loop with a large number of independent iterations. 

Two complications do need mentioning. First, if the computational work associated 

with each iteration is not uniform, close attention needs to be paid to the 

distribution of iterations to the nodes. Second, if integrand evaluation is fast, many 

evaluations must be made at each processor to limit interprocessor communication 

overhead. Neither problem should occur for the integrands in density functional 

theory. 

We end by noting the scientific nature of the present problem. Small metal 

clusters are models for heterogeneous catalysts, provide critical tests for the 

comparison of detailed theoretical predictions with experimental data, and require 

exhaustive calculations to help interpret experimental data. Production computing 

at Gflops speeds is necessary to investigate these problems even using new 

theoretical methods. Massively parallel computers have become an indispensable 
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tool for our work in this area. This success will hopefully encourage additional work 

on massively parallel processing. 



www.manaraa.com

95 

ACKNOWLEDGEMENTS 

This work was supported by the Division of Chemical Sciences, Office of Basic 

Energy Sciences of the U.S. Department of Energy through the Ames Laboratory, 

which is operated for the U.S. DOE by Iowa State University under Contract No. W-

7405-Eng-82. The authors are grateful for considerable computing time on a 

nCUBE 2 hypercube at two different sites: 1) the Scalable Computing Laboratory, 

Ames Laboratory; 2) the Massively Parallel Computational Research Laboratory, 

Sandia National Laboratory. M.S.S. would especially thank Dr. John Gustafson and 

Michael Carter of the Scalable Computing Laboratory for their aid in implementing 

code onto the nCUBE 2 hypercube. M.S.S. also acknowledges the support of the 

Alworth Memorial Foundation. 



www.manaraa.com

96 

APPENDIX A 

In our implementation on the hypercube, intemode communication is 

accomplished using the nwrite and nread nCUBE 2 library routines. Their 

arguments include the starting address and length of the message, the destination 

or source node process and the message type. The message length is specified in 

terms of the number of bytes. The destination or source node process is identified 

by a 4 byte integer. The first 2 bytes identify the node, while the last 2 bytes 

identify the process. For example, process 1 on node 8 is identified by the integer 

65544 expressed in decimal form or 0x00010008 expressed in hexadecimal form. 

The processor and process identification is necessary when more than one user 

process is executed concurrently on a node. Such routines are typically part of the 

software released with distributed memory computers. 

As an example of their use, we include the following segment of code from the 

subroutine that evaluates the analytic derivative of GK{A^}). In this case, each node 

has accumulated values in the arrays fx, fy and fz that when summed across the 

nodes wiU be used to determine the force on each atom. 

c 
c Accumulate the partial sum on each node in order to obtain the final result. 
c 

call dcopy (natoms, fx, 1, buffer ji(l), 3) 
call dcopy (natoms, fy, 1, buffer_a(2), 3) 
call dcopy (natoms, fz, 1, buffer_a(3), 3) 
nelements = 3 * natoms 
length = 8 * nelements 
msgjype = 2000 
flag = 0 

J = 1 



www.manaraa.com

97 

7000 if (j .eq. nprocessors) go to 7010 
node_proc = iproc .NEQV. j 
nerr = Nwrite (bufferjx, length, node_proc, msgjype, flag) 
nerr = Nread (bufferjb, length, node_proc, msgjype, flag) 
call Vadd (bufferji, 1, buffer J), 1, buffer_a, 1, nelements) 
J = j + j  

go to 7000 
7010 continue 

First, the component force arrays, fx, fy and fz, are all copied into a single array, 

buffer_a, using the BLAS routine dcopy. Second, several of the arguments for the 

communications routines are defined. Third, each node sends its buffer_a to one of 

its neighboring nodes and receives in its bufferjb the buifer_a from the same 

neighbor. The elements of the two buffer arrays are then added using the nCUBE 

Math Library routine Vadd to obtain new partial sums stored in bufferji on each 

node. This final step is repeated until each node has communicated with each of its 

neighbors. This requires M iterations for a cube of dimension M. Fig. 2 illustrates 

this process for a hypercube of dimension 2. Each node process is identified by a 

unique value for the variable iproc. The neighboring nodes for a given node are 

determined by an 'EXCLUSIVE OR' operation between the node process variable, 

iproc, and the loop index, j, using a FORTRAN logical operator (i.e., .NEQV.). 

Similar code can also be used to determine the global maximum and minimum of a 

set of numbers distributed across the nodes. 
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APPENDIX B 

The initial distribution of quadrature points on the hypercube determines the 

amount of work each node will perform during calculations. It is important to 

uniformly distribute the computational work in order to minimize the idle time of 

any node waiting upon other nodes to complete their work. For our application, the 

work load balance can be optimized by distributing to each node quadrature points 

that have a range of radial distances to the center of integration. The following 

segment of code from the primary node program is used to distribute the quadrature 

points. 

c 
c Pass to each node a subset of the total number of quadrature points & weights. 
c 

do 100 iti = 1, ntypes 
nqjot = nlaguudti) * nlege * nphi2 
node = 0 
kl = ((nqJot * node ) / nprocessors) + 1 
k2 = ((nqJot * (node + 1)) / nprocessors) + 1 
nquad = k2 - kl 
m = 200 + 10 * iti 
nq = 0 

do 60 k = 1, nlege 
do 50 I = 1, nphi2 

do 40 j = 1, nlaguudti) 
nq = nq +1 
qx(nq) = rv(j, iti) * sinth(k) * cosphi(l) 
qy(nq) = rv(j, iti) * sinth(k) * sinphi(l) 
qz(nq) = rv(j, iti) * costh(k) 
qwght(nq) = rwght(j,iti) * awght(k) 
if(nq .eq. nquad) then 

n = 0 

n = n + nwrite(qx, nbytes, sjprog(node), m, flag) 
n = n + nwrite(qy, nbytes, s_prog(node), m, flag) 
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n = n + nwrite(qz, nbytes, sjprog(node), m, flag) 
if(n .ne. 0) nperrorCsetupJP) 
kl = ((nqjot * node ) / nprocessors) + 1 
k2 = ((nqJot * (node + 1)) / nprocessors) + 1 
nquad = k2 - kl 
m = 200+ 10* iti 
nq = 0 

end if 
40 continue 
50 continue 
60 continue 

100 continue 

Within OEM a Gauss-Laguerre quadrature is used for the radial integration along 

with Gauss-Legendre and Gauss-Chebyshev quadratures for the angular integration. 

For each type of atom, iti, the primary program on node 0 distributes a set of 

quadrature points to the secondary program on every node. The processor/process id 

for the secondary program is given by the array s_prog. The total number of 

quadrature points per center, nqJot, is a product of the number of Gauss-Laguerre, 

Gauss-Legendre and Gauss-Chebyshev quadrature points. These numbers are 

represented by the variables nlaguudti), nlege and nphi2, respectively. The number 

of points for a given node is determined by the difference between the expressions 

for the variables kl and k2. Loops 40, 50 and 60 group the quadrature points into 

subsets that are passed to individual nodes. Since the radial coordinates are 

specified by the inner loop, each subset has quadrature points of varying radial 

distance to the integration center. 
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ABSTRACT 

Stable geometrical structures of Nij^ and Pd|^ clusters (N = 4-23) are 

identified using a corrected effective medium (OEM) theory. Structural optimization 

is accomplished by simulated annealing using analytic derivatives to determine the 

interatomic forces. Unique structural features of these metal clusters are noted 

especially in relation to the bulk and surface phases of these metals and to 

structures commonly associated with rare gas clusters. In regard to the last 

comparison, the predictions of CEM and pairwise additive potentials are analyzed. 

We show that the structure of these transition metal clusters generally maximizes 

the minimum coordination of any atom, whereas the structure for rare gas clusters 

maximizes the number of interatomic distances close to the optimal distance for 

interaction between rare gas atoms. The latter can be interpreted as the packing of 

hard balls. Structural transformations between isomers of similar energy are also 

examined for selected sizes. 
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I. INTRODUCTION 

The geometrical structure of transition metal clusters is undoubtedly an 

important factor determining their physical and chemical properties. Due to their 

increasing scientific and technological importance, considerable effort is currently 

devoted towards advancing our knowledge of their structure. 

Recently, experiments have utilized chemical reactions as probes of various 

structural features of metal clusters. These studies often yield clues about the 

structure of specific clusters such as the number and types of binding sites. While 

this approach provides valuable information, it does not conclusively determine the 

structure of clusters. 

Theoretical calculations can complement such experimental investigations. 

However, interaction potentials must be used that are accurate enough for the 

properties of interest. For clusters of rare gas atoms the interactions are dominated 

by dispersion forces and, therefore, pairwise additive potentials provide reasonably 

accurate potential energy surfaces. As a consequence, rare gas clusters have been 

extensively modeled in the past two decades using just such pairwise additive 

potentials. This work has provided valuable insight regarding the structure and 

growth of these clusters. 

For transition metal clusters the delocalized nature of the electrons and its 

effect on the atomic interactions must be accurately described. Pairwise additive 

potentials are inaccurate for systems in which complex many body interactions are 

significant. At the same time, rigorous quantum chemical calculations^^"^® of these 

systems are limited by current computing power. 
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Philosophically and computationally, it is important to study the structure of 

metal clusters using a hierarchy of theories. Accurate models of metallic bonding, 

based on well defined approximations to quantum chemical theory, are necessary to 

identify directions for more rigorous, and presumably more accurate, approaches. 

The models used for initial probing must have a level of computational intensity that 

allows a thorough investigation of the many dimensional potential energy surfaces. 

Currently, several related methods have demonstrated this capability; the embedded 

atom method (EAM),^®'^® the effective medium method and the corrected 

effective medium method (CEM).^^"^® All of these approaches are based upon 

concepts developed within density-functional theory.^^ An approximation of the 

OEM method has also been developed with much lower computational intensity 

and is referred to by the acronym MD/MC-CEM. In addition, the EM method may 

optionally calculate one-electron energy levels for more accuracy with more 

computational work.^^ 

The accuracy of these methods varies in relation to the size of the system to 

be studied. The zero'th order model of these approaches does not account for size 

differences of systems. For small systems of a few tens of atoms the electron density 

is significantly more inhomogeneous than for a large extended system. Although it 

has been demonstrated that both MD/MC-CEM and EAM model large systems 

relatively well, they do not explicitly account for such differences in the electron 

density between small and large systems of atoms. Hence, the accuracy of these 

approaches for small systems is questionable. On the other hand, both CEM and EM 

with the one-electron energy correction are more rigorous in their attempts to 
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account for the effects of the electron density even for small systems. 

The results for clusters of Ni and Pd atoms presented here are based on the 

OEM method. Derivation of the OEM method,its approximate formulation in 

MD/MC-CEM^®'^® and a review of effective medium type approaches^® are available 

elsewhere. In this work, we present and analyze the stable structures of clusters of 4 

to 23 Ni or Pd atoms. In the process, we demonstrate the importance of effects due 

to the more inhomogeneous electron density of these small systems. 

An overview of the OEM theory and the optimization methods employed are 

presented in Sec. II. Results and discussion of the optimized cluster structures are 

provided in Sec. Ill A, while isomeric transformations between selected stable 

structures are examined in Sec. Ill B. Finally, our concluding remarks are given in 

Sec. IV. 
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II. METHODOLOGY 

Within effective medium type theories the interaction energy of a set of atoms 

{AJ, i=l,...,N} is initially approximated as a sum of the N interaction energies 

between each atom and a medium that models the effect of the remaining N-1 atoms. 

This approximation reduces the problem from determining the interaction energy of 

an N-body system to determining the interaction energy of N one-body systems. The 

effective medium interacting with atom is defined as an electron gas of uniform 

density along with a compensating uniform positive charge density. Usually, this 

effective medium is referred to as jellium and its interaction energy with an atom as 

an embedding energy. The intent of this approximation is to capture a significant 

portion of the interaction between an atom and a delocalized distribution of electrons. 

Several corrections are added to this initial approximation to obtain the 

complete expression of the OEM interaction energy: 

N 

AE({A,}) - x; AE,(A,; n,) + AV̂  + AG({A,}) . «> 
i-1 

As explained above, the first term is the sum of embedding energies for each atom A^ 

embedded into a jellium of density n^, AEj(Aj; n^). The second corrects for the 

difference in Coulomb interaction energies between the N-atom system and the atom-

in-jellium systems, AVQ. The third corrects for the difference in kinetic, exchange 

and correlation interaction energies between the N-atom system and the atom-in-

jellium systems, AG. These energy corrections arise due to differences in the electron 

and positive charge distributions between the N-atom and the N atom-in-jellium 

systems. 
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Within OEM the correction energies are calculated via energy functionals of 

the total electron density of a system. These electron densities are approximated as 

a superposition of the spherical electron densities of isolated atoms and the jellium 

electron density. Under this assumption the Coulomb energy correction is simply the 

sum of Coulomb integrals between all pairs of atoms. In addition, an approximation 

to the kinetic-exchange-correlation energy correction is minimized by expressing the 

jellium density as 

where Z- andR^ are the nuclear charge and position and n(Â^; r - Rp is the spherical 

electron density of atom Aj. 

By far the most computationally intensive part of the CEM interaction energy 

is the evaluation of the kinetic, exchange and correlation energies of the N-atom 

system. This entails a multi-center, three-dimensional integral over all space that 

varies explicitly with any change of the atomic coordinates. Recently, the analytic 

derivative of this integral with respect to the atomic coordinates has been 

formulated.^ ̂  Moreover, implementation of a quadrature scheme on a hypercube has 

greatly reduced the time needed to evaluate the integral.^ ̂  These developments 

have enabled unconstrained optimization of the cluster geometries using the 

complete CEM interaction potential. 

In addition, cluster geometries have been optimized within the MD/MC-CEM 

approximation. In this case, AG is not explicitly calculated and the interaction 

energy is expressed as 

(2) 



www.manaraa.com

110 

AE({A,}) - I; AF,(A,; n,) + AV̂  . «) 
i-1 

where AFj(Aj; n^) is the MD/MC-CEM "effective" embedding energy for atom Aj. 

For an atom embedded in jellium of some density the embedding energy is 

evaluated via interpolation of a set of tabulated points. In this particular study, the 

embedding points are determined by forcing the OEM and the MD/MC-CEM 

interaction energy to agree with the bulk cohesive energy predicted by linear muffin 

tin orbital calculations.^^ Fig. 1 illustrates the embedding functions for Ni and Pd 

generated by this procedure. In their bulk equilibrium phases, both Ni and Pd 

assume a fee crystal structure. In such cases, a one-to-one correspondence exists 

between the bulk lattice constant and the jellium density for a bulk atom. 

Consequently, the embedding functions are determined straightforwardly from a set 

of cohesive energies over a wide range of the lattice constant. 

The reader should note that the use of this embedding Ainction is equivalent 

to using the bulk metal atom as the reference system (for each atom) at an 

appropriate lattice constant (i.e., to get the same value of n^). The corrections, AVg 

and AG, are then interpretable as differences from this reference system, under the 

additive density approximation. The terminology of atom-jellium embedding is 

retained here. 

The contribution of AG to the interaction energy of a symmetric bulk system is 

incorporated within the MD/MC-CEM embedding functions. Consequently, its 

embedding functions are more repulsive than the CEM functions for nearly all 
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Fig. 1: Ni and Pd embedding functions shown for both CEM and MD/MC-CEM 
potentials. Also shown are ranges of the jeUium density for atoms in Ni]^ 
and Pd^ clusters and for atoms either near or on Nig and Pdg 111, 100 and 
110 surfaces. The filled circles on the Nig and Pdg ranges are the 
respective jellium densities for bulk Ni and Pd. 
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jellium densities. In effect, MDIMC-CEM approximates the kinetic-exchange-

correlation energy correction associated with an atom in an arbitrary environment by 

that for an atom in a bulk environment of the same jellium density. The jellium 

density of an atom is a weighted average of the electron density about it due to other 

atoms in the system. It cannot account for all of the effects due to an inhomogeneous 

electron distribution. The validity of this approximation for small clusters will be 

examined later. 

The structure of the clusters was optimized by simulated melting and 

annealing using a Langevin molecular dynamics approach.^^'^^ For a given number 

and type of atoms in a cluster the repeated process of melting then annealing leads 

to a reasonable probability of determining the global minimum. Several structures 

were discovered during similar simulations of H on Ni clusters. In this case, the H 

atoms were removed and the structure of the remaining metal atoms was optimized 

directly using a quasi-Newton algorithm.^® In all cases, the structures were 

optimized to the point where the maximum force on any atom was on the order of 1 x 

10"® eV/Bohr and 1 x 10'^ eV/Bohr within the MD/MC-CEM and the CEM potentials, 

respectively. The intrinsic accuracy of these potentials is certainly no greater than 

several meV for binding energies and about 0.1 Bohr for interatomic distances. 

Therefore, these specified limits are sufficient for the forces to be considered 

negligible. In addition, the precision of the CEM results is dependent on the 

numerical integration of AG. Sufficient number of quadrature points were used in 

order to confidently assume a precision of 1 meV per atom. 

Recently, Elber et al?^'^^ have described a method for polyatomic systems 
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that determines the TniniTnnm energy path through configuration space between two 

minima. We have modified this approach in order to examine the transformation 

between isomers of selected clusters. Starting with an initial guess the path is 

iteratively refined by minimizing the forces perpendicular to the path. An initial 

guess can be as simple as a set of points in configuration space that lie on a straight 

line between the two minima. If minimization of these forces is the only criterion, 

then the points on the path tend to slide downhill to the minima away from the 

transition state. In order to counteract this tendency, we periodically add points 

after a given number of minimization steps so that the transition state is bracketed 

more closely. This modification is motivated by the definition of a transition state as 

a first order stationary point of the potential energy surface. Our objective is to 

maximize the energy along the path. The combination of minimizing the force 

perpendicular to the path and maximizing the energy along the path precisely 

defines the position of the transition point and the magnitude of the energy barrier 

to the transformation. 
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in. RESULTS AND DISCUSSIONS 

In the remainder of this paper, we will analyze the structure of stable 

configurations of Pd and Ni clusters with 4 to 23 atoms. Physical characteristics will 

be emphasized that distinguish these transition metal clusters from the bulk and 

surface phases of these metals and from clusters of rare gas atoms whose binding 

energy is primarily due to dispersion forces. Isomeric transformations between some 

of the stable structures will also be examined. 

A. Stable Structures 

The ball and stick diagrams of Fig. 2 illustrate stable structures of transition 

metal clusters determined in this work. Throughout our discussion the clusters will 

be identified by their N.M index. For a given number of atoms, N, the structures are 

listed in order of decreasing stability of the Ni^ clusters, M=l,2,..., as calculated 

within the OEM potential. The OEM and MD/MC-CEM binding energies for both 

Ni^ and Pd^q^ clusters with these geometries are listed in Tables I and II, 

respectively. 

The mean and range of near neighbor distances, the surface area and the 

volume of selected Nij^ and Pdjj clusters are listed in Tables III and IV. In our 

analysis of these clusters, we have considered all interatomic distances less than 40% 

of the CEM interaction range as near neighbor distances (NND). These Umits are 

18% and 14% larger than the equilibrium bulk NND of Ni and Pd, respectively. 

Generally, this cutoff distance lies within a large gap between the NND and all other 

interatomic distances. Therefore, the results of our discussion should not be 

sensitive to the precise value of this cutoff. The total surface area of a cluster was 
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Table 1. Binding Energy (eV) for Nij^ clusters. 

MD/MC MD/MC MD/MC 
N.M CEM -CEM N.M CEM -CEM N.M CEM -CEM 

4.1 -7.488 -7.017 11.1 -30.081 -27.890 17.1 -51.615 -47.942 

5.1 -10.510 -9.739 11.2 -29.902 -27.588 17.2 -51.462 -47.871 

6.1 -13.982 -12.846 11.3 -29.843 -27.593 17.3 -51.381 -47.884 

7.1 -17.079 -15.719 11.4 -29.690 -27.353 17.4 -50.817® -47.705 

7.2 -16.848 -15.490 12.1 -33.621 -31.374 18.1 -54.872 -51.114 

7.3 -16.440 -15.135 13.1 -37.826 -35.432 18.2 -54.825 -50.941 

8.1 -20.272 -18.615 13.2 -36.706 -34.165 18.3 -54.778 -51.094 

8.2 -19.961 -18.389 13.3 -36.674 -34.125 18.4 -54.325 -51.119 

9.1 -23.460 -21.514 14.1 -40.844 -38.104 19.1 -58.385 -55.070 

9.2 -23.431 -21.608 14.2 -40.722 -38.130 19.2 -58.216 -54.185 

9.3 -23.137 -21.254 15.1 -44.666 -41.592 19.3 -58.142 -54.211 

9.4 -23.131 -21.278 15.2 -44.215 -41.371 19.4 -58.065 -54.162^) 

9.5 -23.112 -21.247 16.1 -48.117 "44.728 20.1 -61.847 -58.127 

10.1 -26.790 -24.768 16.2 -48.032 -44.632® 20.2 -61.843 -58.122 

10.2 -26.628 -24.374 16.3 -47.982® -44.678 20.3 -61.777 -58.257 

10.3 -26.545 -24.421 16.4 -47.839 -44.517 21.1 -65.597 -61.593 

10.4 -26.506 -24.432 16.5 -47.547® -44.572 22.1 -69.374 -65.090 

10.5 -26.500 -24.401 16.6 -47.771 -44.524 23.1 -72.383 -68.620 

^he geometry is not stable within the particular potential since direct minimization 
of this configuration leads to a different one. The tabulated energy was obtained by 
uniformly scaling the atomic coordinates until a minimum energy was determined. 
^This geometry is distorted from €2^ to C2 symmetry in the MD/MC-CEM potential. 
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Table II. Binding Energy (eV) for Pdj^j clusters. 

MD/MC MD/MC MD/MC 
N.M CEM -CEM N.M CEM -CEM N.M CEM -CEM 

4.1 -5.846 -5.384 11.1 -24.940 -23.322 17.1 -43.200 -40.826 

5.1 -8.385 -7.717 11.2 -24.687 -23.071 17.2 -43.102 -40.737 

6.1 -11.331 -10.446 11.3 -24.639 -23.047 17.3 -43.068 -40.734 

7.1 -13.935 -12.900 11.4 -24.460 -22.830 17.4 -42.822 -40.494 

7.2 -13.694 -12.681 12.1 -28.143 -26.380 18.1 -45.960 -43.496 

7.3 -13.301 -12.306 13.1 -31.896 -30.052 18.2 -45.878 -43.368 

8.1 -16.591 -15.400 13.2 -30.689 -28.800 18.3 -45.901 -43.453 

8.2 -16.306 -15.145 13.3 -30.662 -28.761 18.4 -45.833 -43.410 

9.1 -19.246 -17.894 14.1 -34.258 -32.284 19.1 -49.533 -46.998 

9.2 -19.267 -17.937 14.2 -34.240 -32.299 19.2 -48.726 -46.122 

9.3 -18.949 -17.598 15.1 -37.444 -35.339 19.3 -48.735 -46.130 

9.4 -18.948 -17.626 15.2 -37.185 -35.094 19.4 -48.661 -46.068*) 

9.5 -18.931 -17.611 16.1 -40.288 -38.047 20.1 -52.308 -49.636 

10.1 -22.118 -20.649 16.2 -40.220 -37.963® 20.2 -52.302 -49.625 

10.2 -21.889 -20.355 16.3 -40.213 -37.987 20.3 -52.331 -49.701 

10.3 -21.832 -20.341 16.4 -40.082 -37.831 21.1 -55.393 -52.610 

10.4 -21.805 -20.333 16.5 -40.048 -37.838 22.1 -58.508 -55.617 

10.5 -21.813 -20.327 16.6 -40.028 -37.811 23.1 -61.599 -58.686 

^he geometry is not stable within the particular potential since direct minimization 
of this configuration leads to a different one. The tabulated energy was obtained by 
uniformly scaling the atomic coordinates until a minimum energy was determined. 
^This geometry is distorted from €2^ to C2 symmetry in the MD/MC-CEM potential. 
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Table III. Mean and range of near neighbor distances, surface area and volume 
for Ni^ clusters in atomic units. 

CEM MD/MC-CEM 

N.M Mean® Range® S.A.^ Vol.® Mean® Range® S.A.^ Vol." 

7.1 4.26±.14 4.16-4.77 77.4 47.3 4.52±.ll 4.46-4.90 87.6 55.9 

8.1 4.36±.39 4.17-5.50 93.1 65.5 4.49±.01 4.48-4.51 104.6 77.5 

8.2 4.29±.16 4.14-4.80 94.1 58.0 4.53±.ll 4.41-4.90 105.5 67.6 

9.1 4.24±.17 4.23-4.27 109.2 87.4 4.48±.02 4.45-4.49 121.8 102.3 

9.2 4.32±.17 4.20-4.84 110.5 79.1 4.55±.ll 4.49-4.90 123.5 91.0 

10.1 4.35±.19 4.18-4.86 127.5 100.7 4.56+. 12 4.45-4.86 141.9 114.2 

11.1 4.38±.18 4.14-4.78 145.0 121.2 4.58±.ll 4.44-4.79 160.9 136.7 

12.1 4.40±.13 4.18-4.65 166.8 148.2 4.60±.ll 4.39-4.78 183.8 168.4 

13.1 4.42±.10 4.26-4.48 174.1 196.7 4.62±.10 4.46-4.69 190.4 224.9 

14.1 4.47±.24 4.05-5.16 190.3 221.6 4.64±.20 4.27-4.97 207.4 249.6 

14.2 4.43±.15 4.15-4.81 190.7 210.7 4.62±.13 4.41-4.88 207.9 238.0 

15.1 4.46±.21 4.11-4.71 203.7 250.0 4.65±.22 4.27-4.89 220.6 281.7 

15.2 4.45±.22 4.20-5.45 206.3 236.5 4.62±.14 4.44-5.22 224.9 263.3 

16.1 4.48±.24 4.09-4.81 217.8 276.8 4.65±.25 4.25-5.01 235.3 310.4 

16.5^ 4.45±.17 4.28-5.10 223.5 257.4 4.63±.17 4.45-5.30 241.5 289.2 

17.1 4.48±.26 4.12-4.90 231.8 304.1 4.66±.27 4.29-5.10 250.1 339.2 

17.4"^ 4.46±.17 4.26-5.10 240.5 280.0 4.63±.18 4.42-5.29 259.3 313.4 

18.1 4.46±.22 4.16-4.94 247.8 323.2 4.62±.22 4.33-5.10 267.1 356.8 

18.4 4.49±.21 4.16-4.86 258.9 314.4 4.64±.15 4.34-4.87 281.9 345.1 

19.1 4.48±.14 4.11-4.71 269.6 360.1 4.65±.13 4.22-4,83 290.7 401.1 

®See text for definition of the near neighbor distances of a cluster. 
^See text for definition of the surface area of a cluster. 
®See text for definition of the volume of a cluster. 
^his geometry is not stable within the CEM potential. The listed data was 
determined as explained in footnote a of Table I. 
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Table IV. Mean and range of near neighbor distances, surface area and volume 
for Pdj^ clusters in atomic units. 

CEM MD/MC-CEM 

N.M Mean^ Range® S.A.^ Vol." Mean® Range® S.A.^ Vol." 

7.1 4.83±.15 4.72-5.35 99.4 68.4 4.96±.14 4.86-5.46 104.9 74.0 

8.1 4.80±.03 4.73-4.84 119.6 95.3 4.92±.02 4.88-4.94 125.7 102.6 

8.2 4.85±.15 4.69-5.36 120.5 83.6 4.97±.15 4.85-5.48 127.0 90.0 

9.1 4.81±.02 4.79-4.84 140.1 127.0 4.92±.01 4.91-4.93 146.9 136.0 

9.2 4.88±.17 4.75-5.40 141.6 113.6 5.00±.16 4.90-5.50 148.7 121.8 

10.1 4.91±.17 4.73-5.36 163.0 143.3 5.02±.16 4.87-5.45 170.9 153.1 

11.1 4.92±.15 4.72-5.22 185.3 170.7 5.03±.14 4.85-5.32 193.9 182.6 

12.1 4.95±.12 4.71-5.11 212.4 209.1 5.05±.12 4.80-5.21 221.3 222.3 

13.1 4.98±.ll 4.80-5.05 220.9 281.1 5.07±.12 5.07-5.15 229.3 297.3 

14.1 5.00±.23 4.60-5.41 241.6 314.3 5.10±.23 4.69-5.47 250.7 332.1 

14.2 4.99±.15 4.71-5.32 241.9 299.8 5.08±.14 4.85-5.40 251.2 316.5 

15.1 5.03±.24 4.61-5.30 258.1 356.5 5.12±.24 4.69-5.39 267.8 376.7 

15.2 5.00±.19 4.76-5.83 261.9 333.9 5.09±.18 4.88-5.89 271.8 351.8 

16.1 5.04±.27 4.62-5.44 276.6 395.5 5.13±.28 4.69-5.53 286.6 417.1 

16.5 4.98±.15 4.78-5.40 281.2 371.1 5.06±.13 4.89-5.44 291.9 388.8 

17.1 5.05±.29 4.66-5.53 294.9 434.9 5.14±.30 4.74-5.64 305.4 457.7 

17.4 4.97±.15 4.74-5.49 301.0 405.3 5.09±.21 4.86-5.88 313.2 422.9 

18.1 5.02±.25 4.70-5.56 314.7 460.0 5.11±.25 4.79-5.66 325.9 482.9 

18.4 5.02±.16 4.67-5.28 329.2 437.7 5.10±.16 4.75-5.36 341.1 460.4 

19.1 3.03±.15 4.61-5.26 340.2 509.1 5.12±.15 4.63-5.33 351.2 533.7 

®See text for definition of the near neighbor distances of a cluster. 
^See text for definition of the surface area of a cluster. 
"See text for definition of the volume of a cluster. 
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4.1 Td 

7.2 C 3v 

®3h 

9.5 a 

5.1 Dgh 

7.3 Cg 

9.2 Cgy 

10.1 Cgv 

6.1 Oh 

8.1 Dgj 

9.3 Dgjj 

10.2 D4d 

7.1 Dsh 

8.2 C. 

9.4 Cgv 

10.3 Cg 

Fig. 2: Ball and stick diagrams for stable geometries of Nij^ and Pdj^ clusters. 
Usually the principal axis of symmetry lies along the length of the page. 
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11.2 C 

13.11, 11.4 C 

13.2 Dgh 13.3 Oh 14.1 Cgv 14.2 Cg^ 

15.1 Dgd 15.2 Cgv 16.1 Dgh 16.2 

Fig. 2: (continued) 
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16.3 Cg 16.4 Cgv 16.5 Cg 16.6 Cg 

17.1 Tg 17.2 Cg 17.3 Cg 17.4 Cg 

19.1 Dgh 19.2 19.3 19.4 

Fig. 2: (continued) 
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21.1 Cg 22.1 Dgh 23.1 Dgh 

Fig. 2; (continued) 
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calculated by accumulating the area of every face using analytic formulas. The 

volume of a cluster was determined by enclosing it within a box of known volume 

and, then, computing the fraction of this volume outside of the cluster surface via 

Monte Carlo integration. 

Except for the 9 and 20 atom clusters, the CEM prediction of the most stable 

geometries is the same for Ni and Pd. In the case of the exceptions, the isomeric 

energy differences are small. 

Generally, the most stable geometries are spherical or ellipsoidal in shape. 

The tendency of these geometries to have the smallest surface area, as evident in 

Tables III and IV, is related to their spherical shape. For a given volume a sphere 

has the least surface area in comparison to any other shape. Conversely, for a given 

surface area a sphere has the greatest volume. 

In addition, several of these most stable geometries are highly symmetric. For 

instance, structures 4.1, 6.1, 13.1 and 17.1 have Tg, O^, Ij^ and Tj symmetry, 

respectively. All three principal moments of inertia for each structure are identical. 

Therefore, each is classified as a spherically symmetric top in terms of its angular 

momentum properties. Many of the other optimal structures have two of the three 

moments equal and are classified as either prolate or oblate symmetric tops. In the 

case of Nij^ clusters, the contracted NND and high symmetry of these structures 

could significantly alter the magnetic moments of the clusters relative to the bulk 

phase.'^^'^® 

The spherical shape and symmetry of many of the most stable geometries 

suggest that the interatomic forces are balanced. The notion of balanced forces was 
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first described by Leech in his analysis of the equilibrium distribution of a set of 

particles confined to the surface of a sphere under any pairwise law of fbrce.^ The 

concept of balanced structures was extended by Wales to include arbitrary force laws 

and more than one set of symmetry related points.^^ Only the components of the 

forces tangential to the spherical surface are considered in these studies. When 

these components sum to zero, a structure is considered to be balanced. Since the 

tangential force vanishes due to symmetry, a balanced structure is a stationary point 

of some order irrespective of the specific potential determining the forces. (This 

conclusion assumes that the radial force components directed toward the cluster 

center allow a bound stationary point to exist at some set of radial distances.) In 

this context, it is interesting to note that the symmetry of many of the most stable 

geometries is identical to that for structures shown to minimize the repulsion 

between a set of particles interacting via a d'^ potential, where d is the interparticle 

distance."*® 

Further structural characterization of these clusters can be accomplished by 

contrasting them with the bulk and surface environments of extended systems. The 

high degree of symmetry previously discussed distinguishes these clusters from the 

bulk and surface phases. Less apparent, however, is the large range of jellium 

electron densities for atoms at various sites in these clusters. In view of Eq. 2, the 

jellium density for an atom measures the overlap between its electron density and 

that of every other atom in the system. Fig. 1 illustrates this range for small Ni and 

Pd clusters. Also shown are the jellium density for each atom in its equilibrium bulk 

crystal structure and the jellium densities for atoms in the first few layers of the 111, 
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100 and 110 relaxed surfaces of these metals. 

Starting with the 13 atom clusters, a core atom becomes completely 

surrounded by atoms on the cluster surface. An additional core atom is gained in 

structure 19.1 and the 20 through 22 atom clusters. A third core atom is gained in 

the 23 atom structure. The jellium density for these core atoms is greater than for a 

bulk atom. For example, the densities for the core atoms of Ni clusters 13.1, 15.1, 

17.1,19.1 and 23.1 correspond to those for a bulk Ni atom with a lattice constant 

contracted with respect to the equilibrium value by 7%, 5%, 3%, 6% and 6%. 

Similarly, the Pd clusters require 6%, 4%, 2%, 5% and 5% contractions. For both Ni 

and Pd contractions greater than 5% decrease the cohesive energy of the bulk system 

by more than 200 meV. The compression of the bulk crystal structure needed to 

attain these larger jellium densities would require extremely high pressure. 

Specifically, a 5% contraction of either the Ni or Pd bulk lattice constant would 

require a change in pressure on the order of 10^ atm.^^ 

The large densities for these core atoms are due to their large coordination 

and, in some cases, significant contraction of their near neighbor distances (NND) 

with respect to the bulk equihbrium value. For instance, the core atoms of 

structures 13.1, 19.1 and 23.1 have 12 near neighbor atoms just as for a bulk atom. 

The average NND for each of the core atoms, however, is contracted with respect to 

the bulk value by 9%, 8% and 7% for the respective Ni clusters and 8%, 7% and 6% 

for the respective Pd clusters. 

NND are not always contracted. For instance, the core atoms of structures 

15.1 and 17.1 have 14 and 16 near neighbor surface atoms. Two sets of symmetry 
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related surface atoms can be formed for each structure. The first set is defined by a 

set of planes intersecting each cluster. Every plane contains six surface atoms 

arranged so that they define a hexagon. Structure 15.1 heis two of these planes that 

are parallel to each other. In structure 17.1 there are four such planes, but they are 

not parallel. Instead, the intersection of any two of these planes defines an edge 

shared by two of the four hexagons. Both structure 15.1 and 17.1 have a total of 12 

surface atoms in these hexagonal arrangements. The second set of surface atoms is 

defined by capping each hexagon with an atom. These cap atoms lie on the sixfold 

rotation axis for structure 15.1 and define the vertices of a tetrahedron for structure 

17.1. The change in distance to the core atoms relative to the equilibrium bulk NND 

differs substantially between the two sets of surface atoms. For both Ni^ and Pd^ 

the distance between the core atom and a cap atom is contracted by more than 10% 

for structure 15.1 and by more than 7% for structure 17.1. On the other hand, the 

distance between the core atom and a hexagonal atom is nearly unchanged for 

structure 15.1 and expanded by more than 4% for structure 17.1. In these 

structures, the large jellium electron density of the central atom is due to its large 

coordination. 

Generally, the mean NND for Nii^ and Pd^ clusters as predicted by OEM are 

contracted with respect to the equilibrium bulk NND. From Table III for Nij^ 

clusters we observe that the mean value increases from 90% of the bulk value for the 

7 atom cluster to 95% for the 19 atom cluster. Similarly for Pd^ clusters the mean 

NND listed in Table IV increase from 93% to 97%. This increase in NND would 

probably continue smoothly to the bulk value for larger clusters. Hansen et 
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found little variation in the mean NND in a study of Cu clusters from 100 - 1000 

atoms. Their conclusions were based upon simulations using the effective medium 

theory but without the one-electron energy corrections. In this regard, note that the 

predictions of MD/MC-CEM indicate considerably less contraction of the interatomic 

distances (e.g., 4% and 1% contractions for the same 7 and 19 atom Ni clusters where 

CEM shows 10% and 5%, respectively). For the size of clusters considered here the 

explicit corrections for the kinetic, exchange and correlation energies are necessary in 

order to predict the variation of interatomic distances with the size of the cluster. 

Moreover, the large range of NND within a single cluster, as noted in the previous 

paragraph for structures 15.1 and 17.1, is one of the unique aspects of the structure 

of small Ni|^ and Pdj^ clusters. We do expect that as the clusters become 

significantly larger than those studied here, the difference between the bulk and 

cluster NND would become rather small. Whether this occurs by the 100-1000 atom 

range, as indicated in ref. 22, will require further simulations of the type presented 

here. 

Atoms on the surfaces of these clusters can have jellium densities ranging 

from much below to the same as those for metal surface atoms, c.f. Fig. 1. In 

addition, the coordination of the cluster "surface" atoms can be considerably less than 

for an atom in the most stable low Miller index 111, 100 or 110 surfaces of these 

metals. The low coordination and large range of NND would also occur for high 

Miller index planes, steps and other defect sites on surfaces. While the clusters and 

these highly reactive sites on surfaces are not identical, we expect that the reactivity 

of clusters is undoubtedly affected by their structure, much as the types of defects 
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and steps on surfaces influence reactivity. Thus, both clusters and defective surfaces 

display the same general types of bonding arrangements that lead to high reactivity, 

but the particulars will be different on the two. 

Many experimental^"®'^ and theoretical^®'^^'^®'^^'^^ studies of atomic clusters 

have focused on the abrupt and dramatic size dependencies of various physical and 

chemical properties. The unique properties of these magic number of atoms are often 

related to the cluster structure and morphology. The concept of magic numbers is 

aptly illustrated here by the total energy difference between two N atom clusters in 

the lowest energy configuration and the N - 1 atom cluster plus a N + 1 atom cluster 

in their respective minimum energy configurations. This energy difference is plotted 

in Figs. 3 and 4 for Ni^ and Pdj^ clusters. A peak in these plots indicates that the 

stability of the corresponding cluster is enhanced relative to the neighboring cluster 

sizes. Note the alternating valleys and peaks between the 12 and 20 atom clusters. 

In this size range, the stability of Ni^ and Pdjj clusters with an odd number of atoms 

is enhanced relative to the clusters with an even number of atoms. 

Peaks in the mass spectra of rare gas clusters suggest that icosahedral 

geometries are especially stable for these systems. For instance, prominent peaks in 

the mass spectra of Ar^^ clusters at N = 13, 19, 23,... are associated with the 

icosahedron (13.1), the doubly nested icosahedron (19.1) and the triply nested 

icosahedron (23.1)."^'^® The special stability of these structures is rationalized as 

due to their large number of NND. Furthermore, the growth of these clusters from 7 

to 19 atoms is commonly believed to involve the successive capping of faces about a 

fivefold symmetry axis followed by capping the newly formed pentagon. This series 



www.manaraa.com

129 

Energy Difference 
2 NÎN —> NiN+i + NIN-I 

CEM 
MD/MC-CEM 
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g 0.0 
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15 5 7 9 11 13 17 19 21 

N 

Fig, 3: The total energy difference between the most stable configurations of 
neighboring Ni^, and Nij^.^ clusters. Results for both CEM and 
MD/MC-CEM are shown. See text for a complete explanation of this 
energy difference. 
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Energy Difference 
2 PdN —> PdN+i + PdN-i 

1.5 

CEM 
MD/MC-CEM 
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Fig. 4: The total energy difference between the most stable configurations of 
neighboring Pd^, Pdj^^^ and Pdjj.^ clusters. Results for both CEM and 
MD/MC-CEM are shown. See text for a complete explanation of this 
energy difference. 
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of structures is illustrated in Fig. 5 as the top growth sequence. 

Magic numbers have also been observed both experimentally^^ and 

theoretically^^ for Cuj^ ionic and neutral clusters. Currently, no one has reported 

any indication of magic numbers in the mass spectra of transition metal clusters.^ 

However, significant effort has been devoted towards probing the structure of 

transition metal clusters by examining the size dependence of certain chemical 

reactions of these clusters. 

In particular. Parks et al. have investigated the structure of Ni clusters in 

terms of their reactivity with ammonia and water. ̂  At lower pressures, they argue 

convincingly that the adsorbates would preferentially bind to the lower coordinated 

sites. This binding preference can be used to probe the structure of clusters. For 

instance, their data on the uptake of ammonia by Nig as a function of ammonia 

pressure indicates that there are four strong binding sites and four additional weaker 

sites. This observation is consistent with the Dgj structure predicted by CEM as the 

most stable configuration of Nig. In this geometry, four atoms have a coordination of 

four while the other four atoms have a coordination of six. 

Using the saturated product Nij^9(NH3)j^2^ as evidence, Parks et al. also argue 

that Ni^g has the double icosahedral geometry (19.1). The top and bottom 

pentagonal array of atoms plus the two axial atoms on the cluster surface each have 

a coordination number of 6. The remaining surface atoms in the middle pentagonal 

array have a coordination number of 7. Due to their relatively greater exposure on 

the cluster surface, the sixfold coordinated atoms would preferentially bind the 

ammonia. Additional binding of ammonia molecules to the middle pentagonal array 
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9.2 8.2 

13.1 7.1 12.1 10.1 11.1 

8.1 9.1 

Ni Pd M Pd 
CEM -311 -285 -29 +21 

MD/MC-
CEM 

-226 -255 +94 +43 

LJ +29 +439 

Fig. 5: A comparison of two growth sequences from 7 to 19 cluster atoms. The geometries of the top sequence are 
commonly believed to be the most stable structures for rare gas clusters. The geometries of the bottom 
sequence are the most stable structures for Ni and Pd clusters as predicted by OEM (except Pdg). All structures 
have been optimized within the OEM, MD/MC-CEM and Lennard-Jones (U) potentials. As noted in Table I, 
structures 16.5 and 17.4 are not stable within the CEM potential. Beneath the structures, the difference in 
interaction energies (meV) between the bottom and top structure is listed for each of the potentials. 
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Fig. 5: (continued) 
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of Ni atoms would be prohibited due to steric hindrances. Our OEM calculations 

confirm this geometry as the most stable for both Ni^g and Pd^g. 

Often such experimental data is inconclusive. For example, the mass spectral 

data shows that the Ni^g cluster adsorbs 11 ammonia molecules at saturation. Thus, 

the 18 atom cluster has one less binding site than the 19 atom cluster. In view of 

this fact, Parks et al. suggest that the structure of Ni^g is simply formed by removing 

one of the axial atoms of the most stable Ni^g structure. Although this argument has 

some consistency, the experimental data can also be rationalized in terms of the 

binding sites on structure 18.1. In this structure 2 atoms have a coordination of 4, 8 

atoms have a coordination of 6, 7 atoms have a coordination of 7 and 1 atom has a 

coordination of 15. One of the atoms that are sevenfold coordinated has a jellium 

density that is less than the others in this group. It is on the twofold rotation nvis of 

the structure. This atom plus the other atoms that have a coordination less than 7 

comprise 11 binding sites. The predictions of GEM indicate that structure 18.1 is 

much more stable than 18.4 for both Ni^g and Pd^g. Experimental data such as 

produced by Parks et al. must be analyzed carefully in view of the different 

structures these small transition metal clusters can assume and of the possibiUty of 

structural changes induced by the chemical reaction itself. The predictions of a 

theory such as GEM can be invaluable in terms of rationahzing experimental data. 

As shown in the bottom sequence of clusters in Fig. 5, the series of most 

stable structures of Nij^ and Pd^ clusters predicted by GEM can differ significantly 

from the growth sequence commonly assumed for rare gas clusters. For example, the 

structure of the 15 through the 18 atom metal clusters is dominated by points of 
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sixfold symmetry. A detailed comparison of the two growth sequences can clarify the 

relation between structure and atomic interactions within the different clusters. 

In clusters of rare gas atoms the atomic interactions are dominated by 

dispersion forces. Such systems can be accurately modeled by pairwise additive 

potentials. The Lennard-Jones and Morse pairwise potentials have been used 

extensively to study the structure and dynamics of rare gas clusters. For a pair 

of atoms each of these potentials may be formulated as 

V(r) - eg(r)[g(r) - 2] , (4) 

where e is the well depth and r is the interatomic distance. For the Lennard-Jones 

potential g(r) = (rjr)^ while for the Morse potential g(r) = exp(-p[r - r^]). In both 

potentials, r^ is the optimal interatomic distance. The width of the potential well is 

completely determined in the Lennard-Jones potential by the r^ parameter. In the 

Morse potential, it is inversely proportional to p. In order to understand the effect of 

atomic interactions on cluster structure, we have optimized the structure of several 

clusters shown in Fig. 5 using these pair potentials. 

As noted previously. Fig, 5 contrasts the growth of rare gas clusters of 7 to 19 

atoms with the most stable structures for Ni^ and Pd^ clusters predicted by OEM. 

The structures of both sequences have also been optimized within the Lennard-Jones 

potential. In those cases where the growth sequences differ, CEM, MD/MC-CEM and 

Lennard-Jones isomer energy differences are listed. The two parameters of the 

Lennard-Jones potential were determined by forcing it to duplicate the equilibrium 

cohesive energy and lattice constant of bulk Ni. Since the potential can be 

completely expressed in units of e and r,,, the particular choice of parameters only 
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Table V. Mean and range of near neighbor distance (Bohr) and binding energy 
(eV) for Nij^ clusters optimized using a Lennard-Jones potential^. 

N.M Mean^ Range^ B.E. N.M Mean^ Range^ B.E. 

7.1 4.83±.04 4.81-4.95 -8.576 14.2 4.83±.ll 4.66-4.93 -24.861 

8.1 4.81±.02 4.78-4.84 -10.270 15.1 4.91±.24 4.54-5.22 -26.070 

8.2 4.83±.03 4.79-4.94 -10.299 15.2 4.83±.ll 4.65-5.08 -27.187 

9.1 4.80±.01 4.77-4.81 -12.091 16.1 4.93±.27 4.55-5.30 -28.001 

9.2 4.82±.05 4.76-4.92 -12.530 16.5 4.83±.ll 4.63-5.06 -29.522 

10.1 4.83±.07 4.73-4.92 -14.769 17.1 4.93±.29 4.58-5.43 -30.227 

11.1 4.83±.08 4.70-4.98 -17.026 17.4 4.83±.12 4.60-5.02 -31.856 

12.1 4.84±.ll 4.66-5.00 -19.728 18.1 4.87±.24 4.62-5.49 -33.146 

13.1 4.84±.ll 4.67-4.91 -23.033 18.4 4.84±.13 4.54-5.09 -34.570 

14.1° 4.89±.22 4.50-5.24 -23.940 19.1 4.84±.13 4.46-4.97 -37.755 

^Lennard-Jones parameters: e = 0.520 eV, r^ = 4.84 Bohr. 
^See text for definition of the near neighbor distances of a cluster. 
"Structure 14.1 relaxes to 14.2 if the forces are minimized. The listed data was 
obtained by uniformly scaling the atomic coordinates until a minimum energy was 
determined. 

scales the results and the predicted behavior is independent of any particular 

parametrization. Our choice is convenient for comparison with Ni clusters. Table V 

lists the binding energies and the mean and range of NND for clusters optimized 

using the Lennard-Jones potential. Additional data, relevant for the analysis of 

cluster stability in terms of NND, is listed in Table VI. The data in this table is 

applicable for structures optimized in either the OEM or the Lennard-Jones 

potential. 

As evident in Table VI, atoms in the most stable CEM structures are usually 
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Table VI. Number of near neighbor distances, range and mean of the number of 
neighbors for a given atom. 

N.M No. Range Mean N.M No. Range Mean 

7.1 16 4 - 6 4.57 14.2 45 3 12 6.43 

8.1 20 4 - 6  5.00 15.1 50 6 14 6.66 

8.2 19 3 - 7  4.75 15.2 49 4 12 6.53 

9.1 21 4 - 5  4.66 16.1 54 6 15 6.75 

9.2 23 4 - 8  5.11 16.5 53 4 12 6.63 

10.1 27 4 - 9  5.40 17.1 58 6 16 6.82 

11.1 31 4-10 5.63 17.4 57 4 12 6.71 

12.1 36 5 - 11 6.00 18.1 60 4- 15 6.66 

13.1 42 6-12 6.46 18.4 62 5 - 12 6.88 

14.1 46 5 -13 6.57 19.1 68 6- 12 7.16 

more coordinated than atoms in the most stable Lennard-Jones structures. If our 

focus is restricted to optimization within the Lennard-Jones potential, we observe 

from Table V that the mean NND of the most stable Lennard-Jones clusters nearly 

equals the optimal interatomic distance, r^ = 4.84 Bohr. On the other hand, the 

mean NND of those structures corresponding to the most stable GEM clusters is 

usually larger than r^. The variance or range of the NND is also much smaller for 

the rare gas optimal structures. Clearly, structural optimization within the Lennard-

Jones potential is accomplished by maximizing the number of NND close to r^. 

At this point, it should be noted that structures optimized within the 

Lennard-Jones potential are expanded relative to the bulk. This is a universal 

behavior for any Lennard-Jones potential without a radial cutoff. The infinite 

number of shells of atoms about a bulk atom forces r^ to be larger than the bulk 
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NND. When there is no longer an infinite number of atoms as in the clusters, the 

interatomic distances expand in order to be closer to r^. This behavior is opposite to 

the significant contraction of the mean NND predicted by CEM for Ni^ and Pdj^ 

clusters. The LJ predicted expansion is less in error for Ar^^ clusters where the 

observed NND is 7.10 Bohr for both diatomic®® and buUc.^^ The important point is 

that maximizing the number of interatomic distances close to r^ leads to very stable 

geometries within the Lennard-Jones potential. 

In view of this fact, it is also apparent that the stability of rare gas clusters is 

determined by the short ranged nature of the atomic interactions. The special 

stability of the icosahedral geometries 13.1, 19.1 and 23.1 is due to the large number 

of NND of approximately equal length. The fivefold symmetry of these structures 

maximizes the number of interatomic distances that are approximately equal. For 

rare gas clusters, moreover, the structure of the fivefold symmetric clusters is likely 

not disturbed as the clusters grow from 7 to 19 atoms. Since the interactions are 

short ranged, it should be energetically unfavorable for these clusters to rearrange 

and destroy the local sites of fivefold symmetry. This is reasonable in spite of the 

fact that simply capping the fivefold symmetric structures results in a very low 

coordination of the newly added atoms. 

In contrast, the transition metal clusters gain additional energy by 

restructuring so that the degree of coordination is more uniform among the atoms 

exposed at the cluster surface. As a result, the clusters are nearly spherical in 

shape. In order for the Ni|^ and Pd^^ clusters to adopt their most stable geometries 

the NND distances must vary significantly. This does not introduce any significant 
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Table VII. Morse potential parameters for diatomic^ and bulk^ Ni. 

e p p„ 
(eV) (Bohr) (Bohr'^) 

Nig 2.0920 4.157 1.017 4.228 

Ni bulk 0.4205 5.253 0.751 3.957 

®See ref. 15. 
^See ref. 54. 

strain as it would for the rare gas clusters. Instead, the stability of Ni^ and Pdj^ 

clusters is usually enhanced by maximizing the minimum coordination of any atom. 

Braier et al.^^ have examined the interaction range of the Morse potential and 

its effect on stationary points of the potential energy surface for six and seven atom 

clusters. In their work this interaction range is quantified as = r^p, where r^ and 

P are the parameters in Eq. (4). As they noted, physically relevant values of p^ lie 

between 1.5 and 7. For large values of pg the interaction range is short and the 

binding energy is largely due to pairs of near neighbor atoms. As the value of p^ 

decreases, the interaction range increases and all pairs of atoms contribute to the 

binding energy. When p^ = 6 the curvature at the bottom of the potential well 

equals that for the Lennard-Jones potential. 

In order to more closely examine the effect of the potential interaction range 

on structural stabihty, we have optimized the 13, 15 and 17 atom clusters shown in 

Fig. 5 within the Morse potential for a range of p^ values. The parametrization 

necessary to duplicate the equilibrium diatomic or bulk Ni systems, along with the 

consequent values of p^, are listed in Table VII. 

For various potentials, Fig. 6 illustrates the relative change in the binding 
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Breathing Mode of Niia Ih 

Lennaid-Jones 
Morse po =4,5 
CEM 
Morse po =2.5 

90 92 94 96 98 100 102 104 106 108 110 
% SCALE 

Fig. 6: The change in potential energy of icosahedral Ni^g (13.1) plotted as the 
radial NND is imiformly scaled from 90% to 110% of the optimal distance 
for various potentials. The change in potential energy and the radial 
distance are relative to the same quantities in the optimized cluster of each 
respective potential. 
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energy of Ni^g as the radial NND are uniformly contracted and expanded. The 

widths of the potential wells are indicative of the length of the interaction range 

within each potential. Consistent with our previous assessment, the Lennard Jones 

potential has a very narrow range of interaction in comparison to the OEM potential. 

The width of the Morse potential well varies with p„. As shown this width can be 

adjusted so that it is either less than or greater than the width of the OEM potential. 

If the binding energy of Ni^g was plotted using the bulk parametrization of the 

Morse potential, it would lie nearly on top of the CEM curve. The Morse potential 

parametrized by the diatomic data would increase more steeply since it has a 

somewhat larger value for p^. 

As for the Lennard-Jones potential, the Morse potential with the bulk 

parametrization predicts structure 15.2 as more stable than 15.1 and structure 17.4 

as more stable than 17.1. Again, this is because structures 15.2 and 17.4 have more 

NND that are close to the optimal interaction distance. Fig. 7 illustrates the energy 

change of the 15 and 17 atom isomers as is adjusted. As the potential flattens 

with decreasing p^, the isomer energy difference decreases. Eventually, the Pd and 

Ni optimal structures become more stable than the optimal rare gas structures but 

only at very small values of p^. At small values of p^ the potential is rather 

insensitive to small differences in the interatomic distances. Therefore, although 

their range of NND is larger, structures 15.1 and 17.1 are more stable than 15.2 and 

17.4 since they have one additional NND (c.f. Table VI). 

The stability of Nij^ and Pdj^ is determined by more than just the range 

ofatomic interactions. Clearly, the electron density of the system is a significant 
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Fig. 7: The interaction energy for 15 and 17 atom isomers plotted as a function of 
the range of interaction within the Morse potential. 
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factor. This is especially evident for the 18 atom clusters. In this case, the most 

stable geometry for the metal clusters (18.1) has fewer NND than the geometry 

probably assumed by rare gas clusters (18.4). Perhaps the greater stability of 18.1 

relative to 18.4 is attributable to the fact that structure 18.4 has nearly two core 

atoms whereas 18.1 has only one. The jellium electron density for either of these two 

atoms is greater than that for the core atom of structure 18.1. In fact, the jellium 

electron density is larger for each core atom of the structures in the top growth 

sequence shown in Fig. 5 than for those of the bottom growth sequence. In 

comparison to the optimal structures for rare gas clusters, the most stable structures 

for Nij^ and Pdj^not only more uniformly coordinate the atoms on the cluster surface 

but also decrease the electron density about the atom(s) in the cluster core. 

Throughout the previous discussion our emphasis has focused on the 

predictions of CEM while the MD/MC-CEM results have been included in the various 

tables and figures. Since MD/MC-CEM models delocalized, many body interactions 

expressed in terms of the embedding fumctions, it is inherently more accurate for 

transition metal systems than the pairwise potentials. Nevertheless, the predictions 

of MD/MC-CEM differ from those of CEM in several respects. First, the binding 

energies decrease by 5% to 8% as shown in Tables I and II. Second, the interatomic 

distances expand by 3% to 5% as evident in the structural data in Tables III and IV. 

Third, the order of stability for isomers of a given number of atoms changes in 

several instances. 

In particular, the MD/MC-CEM prediction for the most stable isomer of 9, 14, 

18 and 20 Ni atoms and 14 Pd atoms differs from the CEM prediction. These 
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discrepancies occur since AG, the correction for the kinetic, exchange, and correlation 

energies, is smaller in the optimized clusters than the sum of this correction for bulk 

atoms at jellium densities equal to those for the cluster atoms. For example, the 

most stable isomer of Ni^g is structure 18.1 within GEM and structure 18.4 within 

MD/MG-CEM. The CEM energy difference of these isomers is -547 meV while it is 

+5 meV for MD/MC-CEM. AG for the optimized GEM structures 18.1 and 18.4 is 

+11.588 eV and +11.595 eV, respectively. For each structure kinetic-exchange-

correlation energy corrections for a bulk atom at the same jellium densities as those 

for the cluster atoms can be accumulated. These sums are +16.571 eV and +16.102 

eV for structures 18.1 and 18.4, respectively. Galculating the MD/MG-CEM binding 

energies of these clusters is equivalent to replacing the actual values of AG with the 

accumulated bulk values. For both structures this replacement introduces 

considerably more repulsion in the potential. As a result, the clusters expand and 

the binding energy decreases. Furthermore, the MD/MC-CEM approximation for 

structure 18.1 errs by roughly 500 meV more than for structure 18.4. Consequently, 

MD/MG-CEM predicts that the two isomers are nearly isoenergetic with structure 

18.4 being slightly more stable than 18.1. The explicit evaluation of AG within CEM 

strongly favors structure 18.1 over 18.4. The other discrepancies in the predicted 

order of isomer stability can be accounted for similarly. 

The validity of the MD/MC-CEM approximation is critically dependent on 

whether the kinetic-exchange-correlation energy correction associated with each atom 

in a system can be replaced with uniform accuracy by this correction for a bulk atom 

at the same jellium density. The varying degree of accuracy for the MD/MC-CEM 
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approximation can lead to significant errors as discussed for Ni^g in the preceding 

paragraph. Interestingly, MD/MC-CEM correctly predicts the most stable structure 

for Pd^g as 18.1. The main disadvantage of MD/MC-CEM lies in the difficulty of 

knowing when its approximation of the kinetic-exchange-correlation energy correction 

will be uniformly valid. 
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B. Isomeric Transformations 

Transformations between isomers of similar binding energy likely play a 

significant role in the physical and chemical properties of these clusters. For 

instance, Kaldor et have studied the hydrogen steady-state saturation coverage 

of gas-phase transition metal clusters and have reported significant size 

dependencies. In the case of Nij^ clusters, the 14,16 and especially the 18 atom 

clusters display enhanced hydrogen uptake levels relative to the neighboring clusters 

of odd numbers of Ni atoms. Recall from Fig. 3 that Ni^^, Ni^g and Ni^g are not very 

stable in comparison to Ni^g, Ni^g, Ni^y and Ni^g. In addition, the Ni^^, Ni^g and 

Ni^g clusters each have stable isomers within approximately 100 meV of their most 

stable geometries. These low energy isomers often are not as compact as the most 

stable structures. Structural features such as these may account for the size 

dependence of hydrogen uptake by Nij^ clusters. A future paper^^ will examine 

closely the correlation between cluster structure and the ability to adsorb hydrogen. 

In this work we will only illustrate some of the transformations between Ni isomers 

of similar energy. 

Table VIII lists the binding energy differences, AEj, and energy barriers, AEg, 

for the isomeric transformations considered here. For the sake of time some of this 

tabulated data was not calculated with as many quadrature points as for the binding 

energies in Tables I and II. We have, however, noted the uncertainties that should 

be associated with the energy differences. Note, the conversions proceed from the 

less stable to the more stable structure as calculated within CEM. The energy 

barrier within CEM for the transformation of the opposite direction is simply the 
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Table VIII. Energy barriers (meV) for isomeric transformations of Nij^ clusters. 

CEM MD/MC-CEM 

Conversion AEi« AE,a AEgb 

9.2--> 9.1 -31±2 +170±2 +94 +243 

14.2 -> 14.1 -121±2 +23±2 +26 +92 

16.2 > 16.1 -88±4 (+3) -97 c 

18.2 > 18.1 -43±4 +94±4 -172 +266 

18.3 -> 18.1 -94±4 +11±4 -20 +74 

^AEj is the binding energy difference between the listed isomers. 
^AEg is the energy barrier for the transformation of the first structure to the second. 
'^Structure 16.2 is not stable within the MD/MC-CEM potential. 

sum of the absolute values of AEj and AEg. 

Our first example is the conversion of structure 9.1 to 9.2 as shown in Fig. 8. 

Recent experimental measurements of the rate constant for D2 dissociation on Nig 

have disagreed.^'^ This could be due to different proportions of these two stable 

isomers of Nig in the experiments. In fact, classical trajectory calculations of the 

dissociation cross sections of these two isomers of Nig indicate that their reactivity 

differs substantially. Details of the calculation and a thorough analysis of the 

questions posed by this experimental disagreement are presented elsewhere.^^ Our 

emphasis here is on the structural transformation itself. 

In structure 9.2 the lines between atom pairs (2, 6), (3, 5) and (8, 9) are 

perpendicular to the plane determined by atoms 1, 4 and 7. As the conversion to 

structure 9.1 progresses, these lines reorient so that atoms 3 and 6 approach each 

other while atom pairs (8, 9), (1, 7) and (1, 4) become farther apart. This results in a 
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Fig. 8: Transformation of structure 9.2 (Cgy) to 9.1 (Dgjj). 
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net loss of 2 NND for structure 9.1 in comparison to 9.2. 

The structural symmetry allows sis equivalent transformations from the 9.1 

geometry to the 9.2 geometry-two for each diagonal mirror plane of the Dgj^ 

structure. As a result, the atoms are not restricted to stay within a set of symmetry 

related sites. For instance, multiple transformations can move an atom from a site 

capping a face of the trigonal prism in 9.1 to a site forming a vertex of the prism. 

As illustrated in Fig. 9 the transformation of structure 14.2 to 14.1 is 

straightforward. Structure 14.2 is formed by capping a threefold face of an 

icosahedron. As this cap atom is moved across an icosahedral edge, the atoms 

forming the edge move apart while the cap atom sinks deeper into the surface and 

closer to the core atom. As noted in the previous section, the atomic interactions in 

Nijg clusters allow this deformation of the icosahedral geometry in order to better 

coordinate the atom on the surface of the icosahedron. 

The energy barrier for the transformation from 16.2 to 16.1 was difficult to 

calculate precisely. It appears to be only several meV. As shown in Fig. 2 structure 

16.2 has two rectangular faces. Generally, geometries with fourfold faces are not as 

stable for Nij^ or Pdj^ clusters as those with only threefold faces. The reactivity of a 

cluster, however, may be enhanced by these fourfold faces. Structure 16.2 may be 

stabilized by the addition of hydrogen. Fig. 10 shows the transformation from 

structure 16.2 to 16.1. The perspective in this figure of structure 16.2 looks down at 

the fourfold faces along the C^v symmetry axis. These faces are defined by atoms (3, 

4, 6,16) and (3, 4, 7, 13). The threefold rotation avis of structure 16.1 is in the plane 

containing atoms 1, 3, 4, 8 and 14. For the most part, the conversion from structure 
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Fig. 9: Transfonnation of structure 14,2 (Cgy) to 14.1 (C2v). 
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Fig. 10: Transformation of structure 16.2 (Cgy) to 16.1 (Dgjj). 
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16.2 to 16.1 can be characterized as a small rotation of the NND between atoms 3 

and 4. The positions of several other atoms adjiist to this rotation, notably atoms 6, 

7, 13 and 16. This conversion transforms the fourfold faces into threefold faces. 

Also, note that the threefold rotation of structure 16.1 makes the atom pair (3, 

4) equivalent with the pairs (9, 11) and (5,10). These additional pairs can also be 

rotated to convert the Dgj, geometry to structures equivalent to the C2v structure 

show in Fig. 10. 

The 18 atom Ni cluster has three low lying isomers. As shown in Figs. 11 and 

12 all three structures appear to have a pentagonal prism arrangement of atoms. 

The pentagons are actually distorted, but the characterization is still useful. The 

isomers differ in how the faces of the prism are capped. Interconversion between the 

geometries primarily involves adjusting the position of the cap atoms. 

Fig. 11 shows the conversion of structure 18.2 to 18.1. In this case, the five 

atoms of the pentagonal prism visible in the figure are 1, 5, 6, 8 and 12. Atoms 2, 

15,16, 17 and 18 cap the fourfold faces of the prism while atom 9 caps one of the 

fivefold faces. In Figs. 2 and 11 structure 18.2 lays on its square face. As mentioned 

for structure 16.2, this fourfold face may make it especially reactive with hydrogen. 
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Fig. 11: Transformation of structure 18.2 (C^y) to 18.1 (Cgy). 
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Fig. 12: Transformation of structure 18.3 (Cgy) to 18.1 (Cgy). 
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IV. CONCLUDING REMARKS 

Our discussion of the Ni|^ and Pd^^ clusters has demonstrated their unique 

structural properties. Without the predictions of a theory such as OEM, one might 

surmise that the 13 and 19 atom clusters assume structures similar to fragments of 

the FCC crystal structure corresponding to the 1st and 2nd completed coordination 

shells about a bulk atom. Alternatively, one might rationalize that the structure of 

transition metal clusters resembles that of rare gas clusters since both are strongly 

influenced by their finite size. As a result of the CEM calculations discussed in this 

paper, we assert that neither of these rationalizations is correct. The structure of 

these transition metal clusters cannot be characterized as similar to fragments of the 

bulk crystal structure or as similar to structures assumed for rare gas clusters. Their 

finite size and atomic interactions, determined by the delocalized electron density of 

these clusters, distinguishes the Ni^^ and Pd^^ from either the bulk phases of these 

metals or rare gas clusters. (In retrospect, this is perhaps not surprising as a 

general conclusion, but the implications for the particular structures of various 

clusters are not as easily rationalized.) 

Our results have also demonstrated the structural diversity of these clusters. 

For some cases several isomers of similar binding energy have been predicted. In the 

size range from 7 to 23 atoms, the structure of these clusters is dominated 

alternately by points of fivefold and sixfold symmetries. In most cases, the driving 

force can be characterized as maximizing the minimum coordination of any atom on 

the surface of the cluster. This leads to the nearly spherical shape of the clusters, 

their large range of NND and the very high coordination and large electron density 
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about the core atoms of the clusters. In contrast, the stability of rare gas clusters is 

enhanced by structures that have a large number of NND of approximately the same 

distance. As a result, certain atoms on the surface of these clusters have very low 

coordination and the dominance of fivefold symmetry is observed in all clusters from 

7 to 19 atoms. Since there is little physical relationship between the rare gas and 

metal clusters, one should display caution in using structures and properties of the 

former in analysis of the latter. For example, the transformation from icosahedral to 

close packed structures occurs at many thousands of atoms in U clusters, but this 

may not be the case in metallic clusters. 

Theoretical calculations are necessary in order to accurately interpret the 

results of experimental investigations of these clusters. Accurate computational 

modeling of these clusters provides structural predictions that can be correlated with 

experimental reactivity data. In addition, some of the present studies using the 

CEM model need to be supplemented with more accurate, more computationally 

intensive calculations in order to make more definite conclusions. For instance, the 9 

atom cluster has two isomers of nearly the same energy for both Ni and Pd. The 

order of stability of these structures differs between the Ni and Pd clusters. A more 

accurate determination of the order of stability and the energy barrier to the 

transformation between the two isomers is important in order to interpret the 

behavior of these clusters. A hierarchy of theoretical models will be necessary for 

continued progress in the investigations of metal clusters. 
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GENERAL SUMMARY 

In this dissertation, the structure and energetics of Ni^^ and Pdj^ clusters (4 < 

N ^ 23) were investigated. Computational developments necessary for this research 

were also discussed-including the formulation of the analytic derivative of the 

kinetic, exchange and correlation energy fimctionals within the additive density 

approximation of the OEM theory and the implementation of the OEM code onto a 

hypercuhe computer. 

In addition to the significant technological appUcations, the physical and 

chemical properties of transition metal clusters are important to study in their own 

right. As a consequence of their finite size, the geometric structure of small metal 

clusters does not resemble that of the bulk metal. In combination with the probable 

alteration of their electronic structure, the unique geometric arrangements and low 

coordination of their atoms contribute to their notable reactivity. In addition, the 

structure and energetics of transition metal clusters differ distinctly firom clusters of 

rare gas atoms. The atomic interactions within Ni;^ and Pd^ clusters, determined 

by their delocalized valence electron density, allow their structures to relax from 

geometries dominated by points of fivefold symmetry to geometries that more 

uniformly coordinate the atoms on the surface of the cluster. Future research using 

the CEM method will continue to add to our knowledge of the evolution of the 

structural properties of transition metal clusters with increasing size, the variation 

of these properties with different cluster atoms and clusters comprising more than 

one type atom and the structure-reactivity relationships between these clusters and 

various adsorbates. 
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As demonstrated by the results presented herein, the predictions of the 

corrected effective medium (CEM) theory are extremely valuable in attempts to 

understand the structure and energetics of transition metal clusters. Nonetheless, it 

is important to realize the limitations of such an approach. Fundamentally, it 

approximates the electron density of a system using a superposition of atomic 

spherical electron densities. This assumption is reasonably accurate for systems 

whose electron density is delocalized. Even in these systems, however, there are 

instances when the structure and energetics need to be more accurately determined. 

For example, the order of stabiUty and the barrier to isomeric transformation of the 

two nine atom isomers examined in Paper III require additional investigation. 

When the atomic interactions are determined by an electron distribution that is 

localized between atoms (i.e., directional bonding dominates the interactions), the 

additive density approximation is no longer valid. Future theoretical development of 

the CEM method may enhance its predictive ability. Currently, the CEM method is 

an accurate model for transition metal systems whose predictions of structure and 

energetics can direct subsequent research using more rigorously accurate quantum 

chemical methods. 

Massively parallel computations will certainly assume a significant role in 

future scientific calculations. As demonstrated by Paper II, significant advances in 

computational modeling of complex systems should follow the nearly revolutionary 

advances now emerging with the appearance of multicomputers. 
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